ARGOSystems AS210 Time \& Frequency Standard

The ARGOSystems AS210 consists of either a 6-slot rack mount mainframe or a 5-slot portable mainframe and several plug-in modules. The mainframe is a Tektronix TM-506 or a TM-515 which has been electrically and mechanically modified to accommodate an Efratom FRK Rubidium Frequency Standard in the power supply section behind the main motherboard.

The AS210-01A Module Controller is a double wide plug-in containing a microprocessor that controls the remaining three (or four) plug-in modules that are placed in the mainframe.

The complete list of available modules is shown below. Service manuals are available for each mainframe and plug-in (but a few have proven hard to find).

AS210

AS210A-PM
AS210-RM, -LM
AS210-01A
AS210-02
AS210-03
AS210-04
AS210-05
AS210-06
AS210-08
AS210-20
Efratom FRK

Brief List of System Errors
Portable Mainframe
Mainframe (manual not found yet)
Module Controller
Frequency Comparator
Frequency Generator
Digital Delay Generator
Standby Battery
Microwave Frequency Generator
Distribution Amplifier (manual not found yet)
Time Clock (manual not found yet)
Low Noise Rubidium Frequency Standard

ARGOSystems AS210
 Electronic Counter and Frequency Standard Calibration System errors

AS210-01A MODULE CONTROLLER	
$1-01$	Display RAM cannot be cleared
$1-02$	Display RAM cannot be written to
$1-03$	Keyboard interface malfunction
$1-04$	EPROM checksum error
$1-05$	RAM read/write error
$1-06$	Parallel I/O malfunction
$1-07$	No 10 pps to CPU interrupt 7.5
$1-08$	Power fail timer not advancing
$1-09$	Power fail timer advancing faster than once every 10 Seconds
$1-10$	Interval timer malfunction
$1-11$	IEEE-488 interface malfunction
$1-12$	RAM battery back-up is completely discharged
$1-13$	No modules plugged in to satisfy remote learn command

	AS210-02 FREQUENCY COMPARATOR
$2-01$	Output decade registers cannot be cleared
2-02	Input selector circuit is not working properly
$2-03$	Measurement complete but flip flops will not reset
$2-04$	No measurement time base
$2-05$	Self test measurement not within ± 1 part in 10
2-11 to $2-16$	No signal present at indicated input or signal output is not one of the allowed standard frequencies
$2-20$	Data points selected for drift rate calculation are separated by less than 1 minute
$2-21$	Data points separated by discontinuous time (power failure without battery backup of frequency standard)
$2-22$	Initial data point in drift rate calculation overflowed
$2-23$	Final data point overflowed
$2-30$	Channel number specified has no data associated with it
$2-40$	Data point specified is empty
$2-50$	Remote continue command with module in standby mode

AS210-03 FREQUENCY GENERATOR	
$3-03$	1 MHz malfunction, no leveling loop indication
$3-04$	10 MHz malfunction, no leveling loop indication
$3-\mathrm{X1}$	Frequency X did not phase lock where X is 0 thru 5, and $0=50 \mathrm{MHz}, 1=100 \mathrm{MHz}, 2=200$ $\mathrm{MHz}, 3=300 \mathrm{MHz}, 4=400 \mathrm{MHz}, 5=500 \mathrm{MHz}$
$3-\mathrm{X} 2$	Frequency X had no leveling loop indication where X is 0 thru 5

AS210-04 DIGITAL DELAY GENERATOR	
4-00	On 10 KHz setting delay $\geq 99 \mu$ Seconds or on 1 KHz setting delay $\geq 999 \mu$ Seconds
4-10	Self test, PRR $\neq 1$ pps
4-11	Self test, PRR $=10 \mathrm{pps}$
4-12	Self test, PRR $\ddagger 100 \mathrm{pps}$
4-20	Self test delay error: 1 Hz
4-21	Self test delay error: 10 Hz
4-22	Self test delay error: 100 Hz
4-30	Self test delayed pulse not occurring

AS210-05 STANDBY BATTERY	
	No information available

	AS210-06 MICROWAVE GENERATOR
$6-00$	Frequency not available
$6-0 X$	No leveling loop indication at frequency X where X is 1 thru 9, and $1=1 \mathrm{GHz}, 2=2 \mathrm{GHz}$, $3=3 \mathrm{GHz}, \ldots 9=9 \mathrm{GHz}$
$6-1 X$	No leveling loop indication at frequency X where X is 0 thru 8, and $0=10 \mathrm{GHz}, 1=11$ $\mathrm{GHz}, 2=12 \mathrm{GHz}, 3=13 \mathrm{GHz}, \ldots 8=18 \mathrm{GHz}$
$6-30$	1 GHz source not locked
$6-40$	Calibration in progress
$6-50$	Unable to level, and level chosen is greater than guaranteed by performance specifications

AS210-08 DISTRIBUTION AMPLIFIER

No information available
AS210-20 TIME CLOCK
No information available
No information available

AS210A-PM

PORTABLE MAINFRAME

Abstract

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording and/or otherwise without the prior written permission of ARGOSystems, Inc. This manual may not be lent, resold, hired out or otherwise disposed of by way of trade in any form of binding or cover other than that in which it is published, without the prior consent of ARGOSystems, Inc.

TABLE OF CONTENTS

ChapterTitle
Page
Preface v
GENERAL INFORMATION 1-1
1-1 Introduction 1-1
1-2 AS210A-PM Physical and Electrical Description 1-1
2
INSTALLATION 2-1
2-1 Introduction 2-1
2-2 AS210A-PM Locking Bar Removal and Installation Procedure 2-1
OPERATION 3-1
3-1 Introduction 3-1
3-2 AC Operating Voltage Selection 3-1
4 THEORY OF OPERATION 4-1
4-1 Introduction 4-1
4-2 DC Voltage Supplies 4-1
4-3 External Reference Selector Circuit, A2 4-3
5 MAINTENANCE AND CALIBRATION 5-1
5-1 Introduction 5-1
SECTION I
5-2 Preventive Maintenance 5-2
SECTION II
5-3 Performance Testing 5-3
5-4 Internal Frequency Standard Accuracy Test 5-3
5-5 Test Procedure 5-4
5-6 Internal Frequency Standard Drift Test 5-4
5-7 Test Procedure When Using AS210-01 Module Controller 5-6
5-8 Test Procedure When Using AS210-01A Module Controller 5-8
SECTION III
5-9 Calibration/Alignment Procedures 5-9
5-10 AS210A-PM Portable Mainframe Disassembly Procedure for Power Module Removal and Installation 5-9
5-11 Access to Mainframe Circuits 5-11
5-12 AS210 Internal Frequency Standard Calibration 5-12

TABLE OF CONTENTS (Continued)

Chapter Title Page
5-13 AS210 Internal Rubidium Standard Output Frequency Adjustment 5-14
5-14 AS210 Time Base Selector Phase-Locked Oscillator Alignment Procedure 5-14
SECTION IV
5-15 Troubleshooting Procedures 5-16
5-16 Power Supply Failure 5-16
5-17 Compensation of Crystal Aging 5-16
6 ILLUSTRATED PART LIST 6-1
6-1 Introduction 6-1
6-2 Manufacturer's List Code to Name 6-16

LIST OF FIGURES

Figure Title Page
1.1 Portable Mainframe with AS210-01A Module Controller Installed 1-2
3.1 Portable Mainframe Rear Panel Controls and Connectors 3-2
4.1 AS210A-PM Functional Block Diagram 4-2
5.1 AS210 Internal Frequency Standard Test Configuration 5-5
5.2 AS210 Internal Frequency Standard Drift Test Configuration 5-7
5.3 Flow Diagram of the Calibration/Alignment Procedure for the AS210 System Mainframe 5-10
5.4 Block Diagram of Rubidium Frequency Standard Calibration Configuration 5-13
5.5 Power Module Wiring Diagram 5-18
5.6 Internal/External Time Base Selector Assembly A2, Schematic Diagram 5-19
6.1 AS210A-PM Internal/External Time Base Selector Assembly A2 6-5
6.2 AS210A-PM Portable Mainframe Assembly 6-12
6.3 AS210A-PM Mainframe Motherboard Assembly 6-15

LIST OF TABLES

Table Title Page
1-1 AS210 Mainframe Specifications 1-4
3-1 AS210A-PM Portable Mainframe Controls and Connectors 3-3
5-1 Preventive Maintenance Checks and Services 5-2
5-2 Required Test Equipment for the Internal Frequency Standard Accuracy Test 5-3
5-3 Required Test Equipment for the Internal Frequency Standard Drift Test 5-4
5-4 Test Equipment for the AS210 Internal Frequency Standard Calibration Configuration 5-14
5-5 Test Equipment for Alignment of the External Time Base Selector Phase-Locked Oscillator 5-15
5-6 Error Code Listing 5-17

PREFACE

This manual contains the operation and maintenance instructions for the AS210A-PM Portable Mainframe. The data contained herein is arranged as follows:
Chapter 1 General Information
Chapter 2 Installation
Chapter 3 Operation
Chapter 4 Theory of Operation
Chapter 5 Calibration and Maintenance
Chapter 6 Illustrated Parts List

Reference Publications
AS210-01A Module Controller Operation and Maintenance Manual
AS210-02
Frequency Comparator Operation and Maintenance Manual
AS210-03
Frequency Generator Operation and Maintenance Manual
AS210-04
ASigital Delay Generator Operation and Maintenance Manual
AS210-06
AStandby Battery Operation and Maintenance Manual
AS210-08
AS210-20

CHAPTER 1

GENERAL INFORMATION

INTRODUCTION

The heart of the AS210 Electronic Counter and Frequency Standard Calibration System is the AS210A-PM Mainframe shown in Figure 1.1. The AS210A-PM Portable Mainframe can support the double width AS210-01A Module Controller and three single width AS210-type plug-ins. The highly accurate Rubidium frequency standard that provides the time base for the system's frequency measurement circuits is housed within the mainframe. The mainframe and all plug-in modules are completely programmable through an IEEE-488 interface. The AS210-01A and other plug-in modules of the AS210 series are described in separate manuals available from ARGOSystems.

1-2 AS210A-PM PHYSICAL AND ELECTRICAL DESCRIPTION

The AS210A-PM Portable Mainframe consists of two main pieces: a rugged chassis with covers and a power module assembly. The power module slides into the rear of the chassis and is secured by two captured mounting screws. AS210-type modules are inserted into the front of the chassis to mate with the power module. The AS210A-PM Portable Mainframe will slide easily under an airline seat while traveling.

The portable mainframe chassis includes a module locking bar which prevents the modules from sliding out, front and rear covers to protect the instrument during travel, and a convenient heavy-duty carrying handle. The power module contains the highly accurate rubidium frequency standard, power supply, internal/external time base selector circuitry, and the motherboard. The internal/external time base selector assembly permits the AS210 system to be phase-locked to an external frequency standard.

Figure 1.1 Portable Mainframe with AS210-01A Module Controller Installed

The blower fan and power transformer are located on the rear panel. Connectors and controls located on the rear panel are a 10 MHz reference frequency output, internal/external frequency select switch, IEEE-488 interface connector, power switch, external frequency reference input, and internal frequency adjustment. The power module may be removed from the chassis and modules installed for maintenance purposes. Table $1-1$ is an electrical/ mechanical specification for the mainframe in the AS210 Electronic Counter and Frequency Standard Calibration system.

Table 1-1
AS210 MAINFRAME SPECIFICATIONS

	SPECIFICATION	TYPICAL
INTERNAL RUBIDIUM FREOUENCY STANDARD FREQUENCY RETRACE (AFTER TURN-ON)	$\pm 3 \times 10^{-11}$	$\pm 1 \times 10^{-11}$
STABILITY VERSUS		
TIME	$\frac{+2}{\text { per month }}$	$\frac{+1}{\text { per month }}$
TEMPERATURE (0 to $40^{\circ} \mathrm{C}$)	$\pm 1 \times 10^{-10}$	$\pm 5 \times 10^{-11}$
VIBRATION, SHOCK, PULSE, TRANSIT, DROP, AND BENCH HANDLING (PER MIL-T-288008)	$+1 \times 10^{-10}$	$+5 \times 10^{-11}$
+10 PERCENT LINE VOLTAGE VARIATION	$\pm 1 \times 10^{-10}$	$\pm 5 \times 10^{-11}$
LINE FREQUENCY VARIATION ($50-400 \mathrm{~Hz}$)	$\pm 1 \times 10^{-10}$	$\pm 5 \times 10^{-11}$
WARM-UP CHARACTERISTICS	Less than 1×10^{-10} in 20 minutes maximum Less than 1×10^{-10} in 10 minutes typical	
OUTPUT FREQUENCY	10 MHz	
OUTPUT LEVEL	1 volt peak-to-peak	
INTERNAL RUBIDIUM FREQUENCY ADJUSTMENT		
RANGE	$\pm 5 \times 10^{-10}$	
RESOLUTION	3×10^{-11}	

TABLE 1-1 (Continued)

	SPECIFICATION	TYPICAL
EXTERNAL REFERENCE FREQUENCY INPUT FREQUENCY LEVEL	$\begin{aligned} & 1,5 \text {, or } 10 \mathrm{MHz} \\ & 1 \text { VRMS } \end{aligned}$	
REMOTE PROGRAMMING	IEEE-488	
OPERATING ENVIRONMENT		
TEMPERATURE	$0-40^{\circ} \mathrm{C}$	
ALTITUDE	To 15,000 ft	
HUMIDITY	0-85\% relative humidity	
NON-OPERATING ENVIRONMENT		
TEMPERATURE	-55 to $+75^{\circ} \mathrm{C}$	
ALTITUDE	To 40,000 ft	
humidity	To 95% relative humidity	
PHYSICAL CHARACTERISTICS		
POWER (AS210A-PM)	115 V or 230 V ac, 2 amps $50-400 \mathrm{~Hz}$.
SIZE (AS210A-PM)	Depth 20.35" Width 15.25" Height 6.81"	
- WEIGHT (AS210A-PM)	30.5 lbs without plug-ins	

CHAPTER 2 .

installation

2-1 INTRODUCTION

The AS210A-PM Portable Mainframe supports modules of the AS210 series. Power and signal interface is provided to the modules automatically when they are plugged in. The mainframe has a self-contained power supply and requires a source of 115 Vac prime power. The rear panel has a BNC connector for an external reference frequency standard. When an external standard is used, the rear panel INT/EXT switch is set to the EXT position. The AS210-05 Standby Battery Module may be installed on-line to supply power to the rubidium frequency standard and the AS210-20 Time Clock Module for a minimum of three hours during ac power interruptions.

CAUTION

Do not attempt installation of Tektronix plug-in modules in the AS210 Mainframe. Severe damage to plug-in and mainframe will result.

AS210A-PM LOCKING BAR REMOVAL AND INSTALLATION PROCEDURE

The AS210A-PM Portable Mainframe locking bar is useful during transit to secure the modules of the AS210 system in the mainframe. To remove the locking bar, simply loosen the three retaining screws across the face of the locking bar and remove. To install the locking bar, reverse the above procedure.

CHAPTER 3
OPERATION

3-1 INTRODUCTION

WARNING
Be sure that there is at least three inches clearance between the fan of the mainframe and any obstruction, before operating the instrument.

The AS210A-PM Portable Mainframe performs no functions by itself. Details of operation for the various plug-in modules are contained in a separate publication (see Preface). The only operator interface with the mainframe is the internal/external reference switch which is used to select the frequency reference. Figure 3.1 is the illustration of the AS210A-PM Portable Mainframe rear view. Table 3-1 describes the controls and connectors of the AS210A-PM and is keyed to Figure 3.1.

3-2 AC OPERATING VOLTAGE SELECTION

On the AS210A-PM rear panel, the fuse and voltage selector is located to the right of the fan. See Figure 3.1 and Table 3-1.

To select the ac operating voltage, slide the plastic cover open on the voltage selector and rotate the fuse-pull down. Remove the fuse and voltage select board. Position the voltage select board so that the desired printed voltage is on the top left side of the board. Push the board firmly into the module slot. Rotate the fuse-pull back into normal position and install the proper value fuse. The AS210A-PM Mainframe is now ready for operation.

Figure 3.1 Portable Mainframe Rear Panel Controls and Connectors

Table 3-1
AS210A-PM PORTABLE MAINFRAME CONTROLS AND CONNECTORS

INDEX NUMBER FIGURE 3.1	PANEL MARKING	FUNCTION
1	IEEE-488-1975 BUS INTERFACE	Connector for remote control of the AS210 system
2	POWER	Main power switch
3		Power transformer
4		Fuse and power connector
5		Fan
	REFERENCE FREQUENCY	
6	10 MHz OUTPUT	Output connector for 10 MHz from selected frequency standard
7	INPUT	Input connection for an external frequency reference
8	INTERNAL/EXTERNAL	Switch for selecting internal or external frequency reference
9	ADJUST	Standard frequency adjustment

CHAPTER 4
THEORY OF OPERATION

$$
4-1
$$

INTRODUCTION

This chapter provides a functional description of the AS210A-PM Portable Mainframe. The mainframe contains dc voltage supplies, a backplane interconnect assembly, and the rubidium frequency standard. The description is keyed to the block diagram in Figure 4.1 and the schematic diagrams in Chapter 5. Details of common types of circuits are not included in this description.

4-2 DC VOLTAGE SUPPLIES

Prime ac power is applied to a power line filter/voltage selector located on the rear panel of the AS210A-PM. The voltage selector allows 115 Vac or 230 Vac be used with the system. The AS210A-PM power transformer TI provides four ac voltages to the portable mainframe: 9.9 Vac for the +11 Vdc unregulated and +5 volt regulated supplies; 24.5 Vac for the +31 Vdc unregulated supply; 20.5 Vac for the +26 Vdc unregulated supply; and 39.5 Vac for the $\pm 18 \mathrm{Vdc}$ regulated supplies.

A bridge rectifier (CR3), filter capacitor (C4), and two +5 Vdc regulators (U3-U4), provide a +5 Vdc supply voltage for the module controller and $a+5$ Vdc suppy for the remaining modules in the AS210 system. Three bridge rectifiers (CR1, CR2, CR4) and four filter capacitors (C1, C2, C3, C5) provide the $+31 \mathrm{Vdc},+26 \mathrm{Vdc}$, and $\pm 18 \mathrm{Vdc}$ unregulated supplies. The +18 Vdc regulated voltage supplies for the AS210 system are provided by adjustable voltage regulators (U1 and U2). The ± 18 volt regulators are set by factory selected resistors. If replacement becomes necessary, please contact the factory.
EXTERNAL heference

Figure 4．1 AS210A－PM Functional Block Diagram

The AS210 system can be used with the 10 MHz internal rubidium frequency standard or an external frequency standard of 1,5 , or 10 MHz . The external reference frequency input is located on the rear panel of the mainframe. The external reference signal is accepted automatically by the time base circuitry when the reference frequency select switch is in the EXT position. The external reference signal is divided by 100 in frequency divider U1 and shaped into a 250 nanosecond pulsewidth signal by one-shot U2 for application to phase detector U3. The phase detector compares the input standard signal with a ramp signal produced by the VCO so that the VCO is locked to the standard. The 10 MHz VCO output is divided by 100 in dual decade divider U6. The output of $\mathrm{U6}(100 \mathrm{kHz})$ drives ramp generators $\mathrm{Q} 3, \mathrm{Q} 4$. The VCO output is applied to a reference selector gate which is controlled by the rear panel INT/EXT reference switch. The signal from the pulse shaper is also available to the microprocessor. If the reference frequency select switch is in the EXT position, and no signal is applied to the external frequency reference input, an error message is generated. When the reference frequency select switch is in the. INT position, control transistors Q1 and Q5 turn the power off to the external reference frequency circuitry. In the external position, the +26 Vdc voltage supply for the rubidium frequency standard is disconnected so that interference does not occur to the VCO output.

1

CHAPTER 5
MAINTENANCE AND CALIBRATION

5-1 INTRODUCTION

The purpose of this chapter is to provide maintenance and calibration data for the AS210A-PM Portable Mainframe. Section I covers routine preventive maintenance procedures. Section II outlines performance tests for the mainframe. Section III contains the calibration/alignment procedures, and Section IV describes troubleshooting data. Figures 5.5 and 5.6 are the schematic diagrams for the AS210A-PM. Please contact the factory for any assistance required in the maintenance or servicing of the mainframes.

SECTION I

5-2 PREVENTIVE MAINTENANCE

Table 5-1 lists preventive maintenance checks and services which should be performed regularly.

Table 5-1
PREVENTIVE MAINTENANCE CHECKS AND SERVICES

ITEM	PROCEDURE
CABLES	Visually inspect cables for strained, cut, frayed, or otherwise damaged insulation.
CLEANLINESS	Make sure the exterior surfaces of the unit are clean. If necessary, clean exterior surfaces as follows:
	A. Remove the dust and loose dirt with a clean soft cloth. B. Remove dust or dirt from plugs and jacks with a brush.
	WARNING Use only warm soapy water for cleaning all plastic parts. Many solvents will cause the plastic to become brittle.
CORROSION	Make sure exterior surfaces of unit are free of rust and corrosion.
PRESERVATION	Inspect exterior surfaces of the unit for chipped paint or corrosion. If necessary, spot-paint surfaces as follows:
	A. Remove rust and corrosion from metal surfaces by lightly sanding them with sandpaper.
	B. Brush two coats of paint on base metal to protect it from further corrosion.

SECTION II

5-3 PERFORMANCE TESTING

This section describes the procedure to test the AS210A-PM Portable Mainframe to assure proper performance of the instrument. The mainframe must be used in conjunction with the AS210 Module Controller since the CPU in the AS210-01A monitors the circuits of the mainframe. If the mainframe fails any of these performance tests, please see Section III, Calibration/Alignment Procedures, and/or Section IV, Troubleshooting Procedures in this chapter.

5-4 INTERNAL FREQUENCY STANDARD ACCURACY TEST

The following is a procedure for quickly determining if the frequency standard located in the AS210A Mainframe is working. See Sections 5-11 and 5-12 for calibration. The output signal is accessible at the BNC output connector labeled 10 MHz , located on the rear panel of the mainframe. Table 5-2 contains the required equipment to perform this test.

Table 5-2
REQUIRED TEST EQUIPMENT FOR THE INTERNAL FREQUENCY STANDARD ACCURACY TEST

ITEM	RECOMMENDED TEST EQUIPMENT
ELECTRONIC COUNTER	HP-5345A
FREQUENCY STANDARD	HP-5061A or 5062C OPT 010
COAXIAL CABLE (2 Required)	3 -foot long, 50 ohm, BNC

5-5 TEST PROCEDURE

A. Ensure that power is disconnected from the AS210 system before beginning this procedure.
B. Connect the equipment as indicated in Figure 5.1 and apply power to the AS210. The rubidium frequency standard in the AS210 system will require 20 minutes warm-up time to reach the specified frequency accuracy.
C. Monitor the display of the electronic counter. The reading should be $10,000,000 \pm 0.1 \mathrm{~Hz}$. If the reading is not within the specification, see Section III, Calibration/Alignment Procedures, and/or Section IV, Troubleshooting Procedures.
D. Disconnect the frequency counter from the AS210 Mainframe. 5-6 INTERNAL FREQUENCY STANDARD DRIFT TEST

The following is a procedure for testing the drift of the internal frequency standard located in the AS210 Mainframe. The output signal is accessible at the BNC output connector labeled 10 MHz located on the rear panel of the mainframe. Table 5-3 contains the required equipment to perform this test.

Table 5-3
REQUIRED TEST EQUIPMENT FOR THE INTERNAL FREQUENCY STANDARD DRIFT TEST

ITEM	RECOMMENDED TEST EQUIPMENT
ELECTRONIC COUNTER	HP-5345A
FREQUENCY STANDARD	HP-5061A or 5062C OPT 010
COAXIAL CABLE	$3-$ foot long,50 ohm, BNC

Figure 5.1 AS210 Internal Frequency Standard Test Configuration
A. Ensure that power is disconnected from the AS210 system before beginning.
B. Connect the equipment as indicated in Figure 5.2 and apply power to the AS210 system. The Rubidium frequency standard in the AS210 Mainframe will require 20 minutes warm-up time to reach the specified frequency accuracy.
C. Set the AS210-02 Frequency Comparator RATE switch to 1 PER HOUR.
D. Press RESET. The display should indicate "SEL?"
E. Press CONT. The display should indicate "CH 1-6".
F. Press 1, press ENTER. The display should indicate "SEL 10-".
G. Set the AS210-02 Frequency Comparator RANGE switch to 10^{-11}. Press CONT.
H. Allow the AS210 system to operate in this mode for 24 hours and 10 minutes.
I. Press HALT. The display should indicate "24 OFF".
J. Press DSPL. The display should indicate "SEL CH". Press 1, press ENTER.
K. Press CONT. Record the AS210-01 Module Controller's displayed measurement.
L. Repeat Step K until al1 24 measurements are recorded.

AS-210 SYSTEM

Figure 5.2 AS210 Internal Frequency Standard Drift Test Configuration
M. Compute the 24 -hour AS210 internal frequency standard drift rate using the following equation and the results recorded from steps K and L.
$\frac{\sum X_{i} Y_{i}-276 \bar{Y}}{50}=$ Drift rate per day

$$
\text { with } \begin{aligned}
X_{i} & =0,1,2, \ldots, 23 \\
i & =1,2,3 \ldots, 24 \\
Y_{i} & =\text { AS 210 measurement at the } i^{\text {th }} \text { hour } \\
\bar{Y} & =\frac{\sum_{i}^{Y}}{24}
\end{aligned}
$$

5-8 TEST PROCEDURE WHEN USING AS210-01A MODULE CONTROLLER
A. Repeat steps A through I of paragraph 5-7.
B. Press CALC. The display will be blank.
C. Press "YEAR".
D. The display will indicate "SEL CH".
E. Press "CONT".
F. "DP 1" will appear in display.
G. Press "2", "DP 2" will appear in display.
H. Press "CONT", last data point will automatically be selected.
I. Drift rate is displayed in display.

CALIBRATION/ALIGNMENT PROCEDURES

WARNING

The following calibration/alignment procedures (Chapter 5, Section III) and Troubleshooting Procedures (Chapter 5, Section IV) are for use by qualified personnel only. To avoid personal injury, do not perform any servicing other than that of routine maintenance (Chapter 5, Section I) and performance testing (Chapter 5, Section II) unless you are qualified to do so.

Figure 5.3 is a flow diagram of the calibration/alignment procedure for the AS210A-PM Portable Mainframe. Use this flow diagram with the theory of operation in Chapter 4, the text in this chapter, and the illustrated parts lists in Chapter 6. Please note it is not necessary to disassemble the AS210 system to determine if calibration/alignment is needed. For any assistance needed in performing this calibration/alignment procedure, please contact the factory.

5-10 AS210A-PM PORTABLE MAINFRAME DISASSEMBLY PROCEDURE FOR POWER MODULE REMOVAL AND INSTALLATION

WARNING
Dangerous voltages exist at several points throughout the power module. When the power module must be operated with the chassis removed, do not touch exposed connections or components. Disconnect power before cleaning the system or replacing parts.

Figure 5.3 Flow Diagram of the Calibration/Alignment Procedure for the AS210 System Mainframe

NOTES: Unless otherwise specified

1. Interpret drawing in accordance with standard prescribed by MIL-STD-100.
2. All resistance values are in ohms, $1 / 8 \mathrm{~W}, \pm 5$ percent.
3. All capacitance values are in
4. \leftarrow denotes signal ground.
5. All transistors are PN3644.
6. 43 through 412 are 7 segment displays, HP5082-7730.

Figure 5.6 As210-01A Display Logic Assembly A4, Schematic Diagram

1
1
1
1
1
1
1
1
1
1
1
1
1
1

Two thumbscrews on the rear panel secure the power module to the chassis. Loosen the thumbscrews and place the mainframe on end with the power module on the bottom. Lift the chassis vertically to separate the power module from the chassis. It may be necessary to use force between the motherboard and the chassis to loosen the power module. Do not operate the system with the chassis removed any longer than necessary. Reinstall the power module to protect the interior from dust and to avoid personnel shock hazards, as well as provide proper ventilation.

When reinstalling the power module in the chassis, set the chassis with the power module compartment facing up. Align the power module guide pins with their respective holes in the chassis. Tighten the thumbscrews of the power module with a straight-blade screwdriver. Plug-in modules may now be installed.

5-11 ACCESS TO MAINFRAME CIRCUITS

A. Ensure that the power is disconnected before beginning this procedure.
B. Follow the procedure described in paragraph 5-9 of this chapter to remove the power module from the AS210 chassis.
C. Using a phillips screwdriver, remove the two screws holding the internal/external time base circuit card.
D. Tilt the internal/external time base select circuit board up. This exposes filter capacitors and bridge rectifiers for troubleshooting. This also provides access to the tuning coil located on the internal/external time base circuit board.

5-12 AS210 INTERNAL FREQUENCY STANDARD CALIBRATION

The highly accurate internal rubidium frequency standard of the AS210 system is aligned initially at the factory. Figure 5.4 shows the calibration test equipment setup. Table 5-4 lists the recommended test equipment to calibrate the rubidium frequency standard. The output frequency (10 MHz) of the rubidium which is being calibrated or tested is compared to the output frequency (5 MHz) of a reference standard by the Tracor 537A Frequency Difference Meter. Refer to the Tracor 537A operator's manual for specific operation procedures for this instrument. The output of the Tracor instrument is a voltage proportional to the difference in frequency of the test source and the reference source. This voltage is put through a lowpass filter and then applied to an HP-7132A chart recorder. This Hewlett-Packard instrument uses HP-9280-0444 strip chart paper. The chart recorder gives a chart record of the frequency difference versus time. When the Tracor 537A unit is selected to an accuracy of 1 part in 10^{10} and the $H P-7132 A$ unit is properly adjusted to center the recording pen at the center of the strip chart, a range of $\pm 5 \times 10^{-10}$ parts with a resolution of 1×10^{-11} parts per minor division on the strip chart is achievable. The paper chart output of this calibration process shows the difference in frequency between the frequency standard and the output frequency of the AS210 unit under test as well as the frequency drift in time between the two sources. The AS210 Rubidium Frequency Standard should be warmed-up sufficiently before any alignment is attempted. See paragraph 5-13 of this chapter for the rubidium frequency standard output frequency adjustment procedure.

Figure 5.4 Block Diagram of Rubidium Frequency Standard Cal ibration Configuration

Table 5-4
TEST EQUIPMENT FOR THE AS210 INTERNAL FREQUENCY STANDARD • CALIBRATION CONFIGURATION

ITEM	RECOMMENDED TEST EQUIPMENT
FREQUENCY STANDARD	HP-5061A or 5062C OPT 010
FREQUENCY DIFFERENCE METER	TRACOR 537A
LOWPASS FILTER	10 Kohms, 1500 F
CHART RECORDER	HP-7132A
PAPER CHART REFILL	HP-9280-0444
COAXIAL CABLE (4 Required)	$3-$ foot long, 50 ohm, BNC

5-13 AS210 INTERNAL RUBIDIUM STANDARD OUTPUT FREQUENCY ADJUSTMENT

The highly accurate internal rubidium standard may be adjusted within the range of $\pm 5 \times 10^{-10}$ with a resolution of 3×10^{-11}. The reference frequency adjustment control is located on the rear panel labeled ADJUST. After the AS210 Rubidium Frequency Standard has sufficiently warmed up, the frequency may be changed by monitoring the output with the test setup described in paragraph 5-4. Turn the ADJUST control until the desired output is achieved.

5-14 AS210 TIME BASE SELECTOR PHASE-LOCKED OSCILLATOR ALIGNMENT PROCEDURE

In the AS210 Mainframe there is a phase-locked oscillator (PLO) located on the internal/external time base selector assembly. Table 5-5 lists the recommended test equipment to align the PLO. To align the mainframe PLO, use the following procedure:
A. Obtain access to the mainframe internal/external time base selector assembly by applying the disassembly procedures discussed in first part of this section.
B. Apply an RF signal to input BNC on the rear panel. The input signal must be 1,5 , or 10 MHz of a level equal to or greater than 1.0 VRMS.
C. Set the reference frequency internal/external selector switch located on the rear panel, to the EXT position.
D. With the oscilloscope, monitor the TUNE test point on the internal/external time base selector assembly. The TUNE test point should have a dc voltage between +2 V and +8 Vdc . If this voltage is not within $+2 V$ and +8 Vdc , then go to E . Otherwise go to F.
E. With L2 at fully CCW, adjust in a CW direction. The tune TP should start at a +12 Vdc level. Adjust L 2 until the level on the TUNE test point passes through a minimum dc level. Continue adjustment until a level of +8 Vdc is obtained.
F. Reassemble the mainframe.

Table 5-5
TEST EQUIPMENT FOR ALIGNMENT OF THE EXTERNAL TIME BASE SELECTOR PHASE-LOCKED OSCILLATOR

ITEM	RECOMMENDED TEST EQUIPMENT
FREQUENCY SYNTHESIZER	HP-8656A
OSCILLOSCOPE WITH PROBES	Tektronix 465 or Equivalent COAXIAL CABLE

SECTION IV

5-15 TROUBLESHOOTING PROCEDURES

Troubleshooting of the AS210 system mainframe is facilitated by error codes displayed on the AS210 Module Controller. Table 5-6 correlates the error code displayed on the module controller when a fault occurs to the malfunction. An explanation of the problem is provided with possible solutions.

5-16 POWER SUPPLY FAILURE

If a power failure occurs in any of the supplies, check the fuses located on the front of the motherboard. Fuse Fl is a five ampere SLO-BLO and fuses $\mathrm{F} 2-\mathrm{F5}$ are three ampere SLO-BLO. If one of the +5 volt regulated supplies fails and fuse F1 is not open, then check fuses F6 and F7 located on the lower center part of the motherboard. If the same problem arises after replacing the fuse(s), check the load on the failed supply for shorts.

Remove power module from chassis as described in paragraph 5-9. Monitor the dc voltage on pin 6 of the rubidium frequency standard; that voltage should be approximately +8 volts +2 volts. If the quartz crystal oscillator voltage approaches the end of the control range, a correction of the crystal oscillator base frequency must be made. This is accomplished by adjusting the oscillator trimmer. The trimmer is located on the side of the rubidium under the phillips screw, which is visible when looking at the side of the power supply where the rubidium is located. A clockwise adjustment of the trimmer causes an increase in control voltage. The adjustment should be made after the unit has been operated for at least one hour. The control voltage should be set for 8 Vdc .

Table 5-6
ERROR CODE LISTING

ERROR CODE	PROBLEM	RECOMMENDED SOLUTION
0-00	Rubidium frequency source is not phase locked	Phase lock should be obtained within 10 minutes of power turn-on and is indicated by a logic low at pin 5 on the rubidium standard. Pin 6 on the rubidium standard should have a voltage of +8 volts +2 volts. If not, refer to troubleshooting paragraph 5-17. If the rubidium lamp is operating properly, a voltage betweem 5 volts and 12 volts will be present at pin 7 on the rubidium standard. An inoperative lamp is indicated by a signal of approximately 3 volts at pin 7. Return defective Rubidium Standards to ARGOSystems.
0-01	External frequency source selected with INT/EXT switch with no signal present at external input connector	Change switch setting to INT position or connect external frequency source.

$=$

Figure 5.6 Internal/External Time Base Selector Assembly A2, Schematic Diagram

CHAPTER 6
 ILLUSTRATED PARTS LIST

6-1 INTRODUCTION

This section contains an illustrated parts list for the AS210A-PM Portable Mainframe. The assembly number and title are listed at the top of the parts list. The parts lists are divided into six columns and arranged in the following order:

Column 1 - Item Number
Column 2 - Quantity per Assembly
Column 3 - Manufacturer's Code
Column 4 - Part Number
Column 5 - Description
Column 6 - Reference Designation

ASSEMBLY NUMBER 125470 - INTERNAL/EXERNAL TIME BASE SELECTOR AS210A-PM

ITEM	QTY	MANUFACTURER'S CODE	PART NUMBER	DESCRIPTION	REF. DESIG.
1	1	33472	125473	PWB 125473	
2	REF	33472	125471	Schematic	
3	REF	33472	125472	Master Pattern	
4	REF	33472	125474	Silk screen	
5	2	01295	74LS390N	Dual Decade Counter	U1,U6
6	1	01295	74LS123N	Dual One Shot	U2
7	1	01295	74LSOON	Quad NAND Gate	U10
8	1	02735	CD4066A	Quad FET Switch	U3
9	2	27014	741 CN	OP Amp	U7,48
10	4	27014	2N2369A	NPN Transistor	Q1,Q7,Q8, Q9
11	2	27014	2N2222A	NPN Transistor	Q2, Q4
12	1	27014	2N5179	NPN Transistor	Q6
13	1	81349	CK05BX473K	.047 pF 10\%, Ceramic Capacitor	C16
14	5	51642	$\begin{aligned} & 300-50-601- \\ & 105 M \end{aligned}$	1 FF, 20\%, Ceramic Capacitor	$\begin{aligned} & \mathrm{C} 1, \mathrm{C} 6, \mathrm{C} 7, \\ & \mathrm{C} 26, \mathrm{C} 2 \end{aligned}$
15	7	81349	CK05BX104K	. $1 \mathrm{\mu F}, 10 \%$, Ceramic Capacitor	$\begin{aligned} & \mathrm{C} 2, \mathrm{C} 33, \mathrm{C} 4, \mathrm{C} 27, \\ & \mathrm{C} 22, \mathrm{C} 25, \mathrm{C} 28 \end{aligned}$
16	1	81349	CX05BX101K	100 pf, 10%, Ceramic Capacitor	C3
17	1	81349	CK05BX473K	$.047 \mu \mathrm{~F}$ 10\%, Ceramic Capacitor	C16
18	2	81349	CK05BX102K	$.001 \mu \mathrm{~F}, 10 \%$, Ceramic Capacitor	C32,C5
19	1	81349	CK05B $\times 151 \mathrm{~K}$	150 pF, 10%, Ceramic Capacitor	C19
20	2	81349	CK05BX100K	$10 \mathrm{pF}, 10 \%$, Ceramic Capacitor	C34, C30
21	2	81349	CK05BX33IK	330 pf, 10\%, Ceramic Capacitor	C20,C23
22	1	81349	CK05B $\times 681 \mathrm{~K}$	680 pf, 10\%, Ceramic Capacitor	C12

ASSEMBLY NUMBER 125470 - INTERNAL/EXERNAL TIME BASE SELECTOR AS210A-PM (Continued)

ITEM	QTY	$\begin{aligned} & \text { MANUFAC- } \\ & \text { TURER'S } \\ & \text { CODE } \\ & \hline \end{aligned}$	PART NUMBER	DESCRIPTION	REF. DESIG.
23	2	81349	CX05BX330K	$33 \mathrm{pF}, 10 \%$, Ceramic	C17, 12
				Capacitor	
24	1	81349	CK05B $\times 332 \mathrm{~K}$	$.0033 \mu \mathrm{~F}, 10 \%$, Ceramic Capacitor	C13
25	1	81349	CK05BX270K	27 pf, 10\%, Ceramic Capacitor	C14
26	1	81349	196D156X902KAI	$15 \mu \mathrm{~F}$, 20V. Electrolytic Capacitor	C15
27	1	81349	CK05BX103K	$.01 \mu \mathrm{~F}, 10 \%$, Ceramic Capacitor	C24
28	1	04713	MPS 3639	PNP Transistor	Q3
29	1	27014	PN3644	PNP Transistor	Q5
30	2	27014	78L05-Cz	5V Regulator	U4, U9
31	1	27014	78L12-CZ	12V Regulator	U5
32	2	54893	1N6263	Schottky Diode	CR4, CR8
33	1	50434	5082-4487	Light Emitting Diode	CR5
34	1	04713	MV2209	Tuning Diode	CR6
35	1	04713	1N4735A	Zener Diode 6.2V	CR 7
36	3	27264	22-03-2041	4 Pin Connector	J5, $11, \mathrm{~d} 2$
37	1	27264	22-03-2031	3 Pin Connector	J4
38	1	98291	51-051-0000	Conhex Connector, Snap-on	J3
39	1	02114	VK200-20/4B	Wideband Choke	L1
40	1	02114	SK460-1	$3 \mu \mathrm{H}$ Variable Inductor	L2
41	3	00779	20101B-1	Terminal	
42	3	01295	C9316-02	IC Socket, 16 Pin	
43	2	01295	C9314-02	IC Socket, 14 Pin	
44	2	01295	C9308-02	IC Socket, 8 Pin	
45	5	81349	RCR05G102	1K ohm 5\% 1/8W Carbon Comp	$\begin{aligned} & R 1, R 8, R 30, \\ & R 33, R 39 \end{aligned}$
46	1	81349	RCR05G393JS	39K ohm 5\% 1/8W Carbon Comp.	R2

ASSEMBLY NUMBER 125470 - INTERNAL/EXERNAL TIME BASE SELECTOR AS210A-PM (Continued)

ITEM	QTY	MANUFACTURER'S CODE	PART NUMBER	DESCRIPTION	REF. DESIG.
47	7	81349	RCR05G471JS	470 ohm 5\% 1/8W Carbon Comp	$\begin{aligned} & R 3, R 4, R 28, \\ & R 32, R 35, R 40, \\ & R 41 \end{aligned}$
48	11	81349	RCR05G472JS	4.7K ohm 5\% 1/8W Carbon Comp.	$\begin{aligned} & \text { R4,R42,R5, } \\ & \text { R10,R25,R36, } \\ & \text { R14,R15,R31, } \\ & \text { R34,R37 } \end{aligned}$
49	4	81349	RCR05G222JS	2.2K ohm 5\% 1/8W Carbon Comp	$\begin{aligned} & \mathrm{R} 6, \mathrm{R} 7, \mathrm{R} 11, \\ & \mathrm{R} 12 \end{aligned}$
50	1	81349	RCR05G681JS	680 ohms 5\% 1/8W Carbon Comp	R9
51	1	81349	RCR42G151JS	150 ohm 5\% 2W Carbon Comp.	R13
52	3	81349	RCR05G114JS	110K ohm 5\% 1/8W Carbon Comp	R17,R18,R19
53	1	81349	RCR05G273JS	27K ohms 5\% 1/8W Carbon Comp	R20
54	1	81349	RCR05G332JS	3.3K ohms 5\% 1/8W Carbon Comp.	R22
55	1	81349	RCR05G682JS	6.8 ohms $5 \% 1 / 8 \mathrm{~W}$ Carbon Comp.	R21
56	1	81349	RCR05G333JS	33K ohm 5\% 1/8W Carbon Comp.	R23
57	1	81349	RCR05G223JS	22K ohm 5\% 1/8W Carbon Comp	R24
58	1	81349	RCR05G152JS	1.5K ohm 5\% 1/8W Carbon Comparator	R27
59	1	81349	RCR05G562JS	5.6K ohm 5\% 1/8W Carbon Comp	R26
60	2	81349	RCR05G101JS	100 ohm 5\% 1/8W Carbon Comp	R29, R39
61	1	81349	RCR05G100JS	10 ohm 5\% 1/8W Carbon Comp	R38

Figure 6.1 AS210A-PM Internal/External Time Base Selector Assembly (A2)

ASSEMBLY NUMBER 125550 - MAINFRAME ASSEMBLY AS210A-PM

ITEM	QTY	MANUFACTURER'S CODE	PART NUMBER	DESCRIPTION	REF. DESIG.
1	1	80009	390-0529-00	Case and Covers	
2	1	05245	80-1245	Power Cord	
3	1	80009	348-0476-00	Stand	
4	1	33472	125551	Power Module	
5	1	33472	117166	Logo Strip	
6	1	12136	367-0215	Handle Black	

ASSEMBLY NUMBER 125551 - POWER MODULE ASSEMBLY AS210A-PM

ITEM	QTY	MANUFACTURER'S CODE	PART NUMBER	DESCRIPTION	REF. DESIG.
1	REF	33472	125551	Power Module Assembly AS-210A-PM	
2	REF	33472	12552	Wiring Diagram	
3	1	33472	125558	Rear Panel Assembly	
4	1	33472	125554	Deck Assembly	
5	1	75915	313005	Fuse, 5 Amp, Slo-Blow	
6	1	33472	125566	Motherboard	
7	2	80009	426-1350-01	Guide Pin	
8	1	33472	125470	Internal/External TimeBase Selector	
9	1	33472	125556	Harness Assembly	
10	1	33472	125570	Mounting Bracket for Timebase Board	
11	1	33472	125571	Mounting Bracket for Timebase Board	
12	2	81349	NAS671-C4	Small Pattern Hex Nut \#4	
13	7	81349	NAS620-C4	Reduced 0/D Flatwasher \#4	
14	7	81349	MS 35338-135	Lockwasher \#4	
15	5	81349	MS51957-13	Screw PH 4-40x1/4	
16	2	81349	MS24C93-C2	Screw FH 4-40x1/2	
17	2	81349	MS24C93-C6	Screw FH 4-40x1/2	
18	2	81349	2051-440-A-0	Standoff $3 / 16 \times 4-40 \times 1 / 8$	
19	8	81349	MS51957-27	Screw PH 6-32 $\times 5 / 16$	
20	4	81349		Fillester Head 6-32×3/8	
21	8	81349	MS 35338-136	Lockwasher \#6	
22	8	81349	NAS620-C6	Reduced 0/D Flat Washer \#6	
23	2	81349	MS51957-43	Screw PH 8-32x3/8	

ASSEMBLY NUMBER 125551 - POWER MODULE ASSEMBLY AS210A-PM (Continued)

ITEM	QTY	MANUFACTURER'S CODE	PART NUMBER	DESCRIPTION	REF. DESIG.
24	2	81349	MS35338-137	Lockwasher \#8	
25	2	81349	NAS620-C8	Reduced 0/D Flat Washer \#8	
26	2	55566	351	Hinged Standoff	
27	2	80009	213-0726-00	Screw, Retaining $6-32 \times 6.0002$	

ASSEMBLY NUMBER 125554 - DECK ASSEMBLY AS210A-PM

ITEM	QTY	MANUFAC- TURER'S CODE	PART NUMBER	DESCRIPTION	REF. DESIG.
1	1	33472	125555	Deck Plate	
2	1	33472	125564	Heat Sink Assembly	
3	1	90201	$\begin{aligned} & \text { CGR203U016R- } \\ & \text { 4C3PL } \end{aligned}$	Capacitor 20000 MFD 16 Vdc	
4	4	90201	$\begin{aligned} & \text { CGR392U040R- } \\ & \text { 3C3PL } \end{aligned}$	Capacitor, 3900 MFD 49 Vdc	
5	2	33472	125562	Side Frame	
6	8	81349	M2. 6	Metric Screw, Flat head, 90°, 6 mm LG (.236)	
7	1	81349	MS24693-C32	Screw FLH 6-32XI	
8	1	81349	NAS671-C6	Small Pattern Nut \#6	
9	1	81349	NAS620-C6	Flat Washer R OD \#6	
10	1	81349	MS35338-136	Split Lock Washer \#6	
11	3	81349	MS24693-C2	Screw FLH 4-40x1/4	
12	3	81349	MS21044-C04	Nylon Stop Nuts \#4	
13	4	81349	MS24693-C25	Screw FLH 6-32x5/16	
14	3	04713	MDA-970-A2	4 amp Diode Bridge	CR1-2-4
15	1	33900	SCBA-2	Bridge Rectifier	CR3
16	1	33472	125563	Cap Bracket	
17	3	81349	NAS620-C4	Reduced 0/D Flat Washer \#4	
18	3	81349	MS24693-C7	Screw FLH 4-40x5/8	
19	4	81349	MS35275-228	Fillester Hd Screw 6-32x3/8	
20	4	06383	08427	Cable Ties	
21	1	81349	SE26XF03	Terminal Multi-Tie	

ASSEMBLY NUMBER 125556 - HARNESS ASSEMBLY POWER MODULE AS210A-PM

ITEM	QTY	MANUFACTURER'S CODE	PART NUMBER	DESCRIPTION	REF. DESIG.
1	REF		12555	Harness Drawing	
2	REF		125557	Wire List	
3	4	27264	22-01-2041	4 Pin Connector	J1, $22,35,311$
4	1	27264	22-01-2031	3 Pin Connector	J4
5	1	27264	22-01-2021	2 Pin Connector	J9
6	21	27264	08-50-0114	Pin	J1-4, 39, 311
7	1	27264	09-50-7091	9 Pin Connector	J6
8	1	27264	09-50-7041	4 Pin Connector	J8
9	13	27264	08-50-0108	Pin	J6, 38
10	A/R		E-20	Wire 20 AWG	
11	A/R		E-22	Wire 22 AWG	
12	A/R		E-24	Wire 24 AWG	
13	A/R		E-26	Wire 26 AWG	

ASSEMBLY NUMBER 125558 - REAR PANEL ASSEMBLY AS210A-PM

ITEM	QTY	MANUFACTURER'S CODE	PART NUMBER	DESCRIPTION	REF. DESIG.
1	1	33472	125559	Panel, Rear	
2	REF	33472	125560	Silkscreen, Rear Panel	
3	REF	33472	125557	Wire List	
4	1	33472	125414	Power Transformer	
5	4	33472	117173	Standoff, Legs	
6	1	05345	85-1507	Equipment Rating Label	
7	1	09353	9201-J3-E	Switch, Rocker, DPDT	
8	1	95345	6 J 4	EMI Line Filter	
9	1	23936	8124	Fan	
10	1	23936	5508	Finger Guard	
11	1	77969	RC\#2-1/6WG	Grommet, Rubber, Black .188	
12	2	91836	KC-79-35	BNC Bulkhead Receptacle	
13	1	33472	150x750A	ARGOSystems I.D. Label	
14	1	09353	7301-P3YZQ-E	Switch Toggle DPDT	
15	2	33472	117301	Standoff, Stud Mount	
16	1	33472	117352-01	Cable Assembly IEEE	
17	1	32997	3006P-1-1022	Trimpot, Panel Mount, 1K ohm	R6
18	1	73138	RH-5-5W65	65 ohm 5\% 1\%	R7
19	1	75915	313005	Fuse, 5 amp, Slo-Blo	F1
20	1	00779	1497	Solder Lug	
21	4	81349	MS51957-50	Screw PH 6-32x1-1/4	
22	2	81349	MS51957-4	Screw PH 2-56x5/16	
23	4	81349	NAS620-C2	Reduced 0/D Flatwasher \#2	
24	2	81349	MS 35338-134	Split Lockwasher \#2	
25	2	81349	NAS671-C2	Nut, Small Pattern \#2	

ITEM	QTY	MANUFAC- TURER'S CODE	PART NUMBER	DESCRIPTION
26	8	81349	NAS671-C6	Nut, Small Pattern \#6
27	3	81349	MS51957-29	Screw PH 6-32x7/16
28	1	81349	MS51957-30	Screw PH 6-32x1/2
29	4	81349	MS24693-C27	Screw FH 6-32x7/16
30	8	81349	MS35338-136	Lockwasher \#6
31	12	81349	NAS620-C6	Reduced 0/D Flat Washer \#6

REF. DESIG.

Figure 6.2 AS210-PMA Portable Mainframe Assembly

ASSEMBLY NUMBER 125564 - HEAT SINK ASSEMBLY AS210A-PM

ITEM	QTY	MANUFACTURER'S CODE	PART NUMBER	DESCRIPTION	REF. DESIG.
1	2	33472	117174	Heat Sink	
2	1	80009	260-0907-00	Thermal Switch	
3	1	33472	117172-01	Spacer, Mounting	
4	1	33472	117172-02	Spacer, Mounting	
5	2	18100	UA78H05SC	Voltage Regulator	U3, U4
6	1	18100	UA78HGASC	5 amp Voltage Regulator	U2
7	1	18100	UA79HGSC	5 amp Negative Adj. Voltage Regulator	U1
8	2	81349	1416-6	Solder Lug \#6	
9	4	81349	$\begin{aligned} & 300-50-601- \\ & 105 M \end{aligned}$	```l fd 20% Ceramic Capacitor```	
10	8	81349	MS51957-30	Screw PH 6-32x1/2	
11	20	81349	NAS620-C6	Flat Washer Reduced $0 / D$ \#6	
12	11	81349	MS 35338-136	Split Lockwasher \#6	
13	9	81349	NAS671-C6	Small Pattern Nut \#6	
14	2	81349	MS51957-14	Screw PH 4-40 x 5/16	
15	2	81349	NAS620-C4	Reduced O/D Flat Washer \#4	
16	2	81349	MS35338-135	Split Lockwasher \#4	
17	1	81349	RN55D2211FS	2.21K ohm $1 \% 1 / 8 \mathrm{~W}$	R9
18	1	81349	RN55DXXXXFS	FS ohm $1 \% 1 / 8 \mathrm{~W}$	R8
19	1	81349	RN55D4221FS	4.22K ohm $1 \% 1 / 8 \mathrm{~W}$	R11
20	1	81349	RN55DXXXXFS	FS ohm 1\% 1/8W	R10
21	1	81349	MS 51957-36	Screw PH 6-32x1-1/2	
22	1	81349	MS51957-27	Screw PH 6-32x5/16	
23	1	81349	MS51957-28	Screw PH 6-32x3/8	

ITEM	QTY	MANUFACTURER'S CODE	PART NUMBER	DESCRIPTION	REF. DESIG.
1	1	33472	125567	Motherboard PWB	
2	REF	33472	125568	Master Pattern	
3	5	1781	K600-11-56Y25	56 Pin Connector (no ears)	J1-35
4	2	75915	27503.5	Fuse, Axial	
5	10	75915	102071	Fuse Clip, PC Mount	
6	4	71279	1802752-02-05	Terminal, Bifurcated	
7	5	75915	313003	Fuse, 3 amp, Slo-Blo	F1-F5
8	1	27264	09-88-1041	4 Pin con Rtangle	J8
9	1	27264	22-05-2041	4 Pin R Angle Connector	311
10	1	27264	22-05-2021	2 Pin R Angle Connector	J4
11	1	27264	09-60-1091	9 Pin Connector	J6
12	1	27264	3429-1202	Connector, 26 Pin	

Figure 6.3 AS210A-PM Mainframe Motherboard Assembly

6-2 MANUFACTURER'S LIST CODE TO NAME

This section contains all manufacturer's codes for materials used in the AS210 system. The codes are listed in numerical order by code.

$\mu \mathrm{A} 78 \mathrm{H} 05$ • $\mu \mathrm{A} 78 \mathrm{H} 05 \mathrm{~A}$ 5-Volt 5-Amp Voltage Regulators

Hybrid Producte

Description

The $\mu A 7 B H O S$ and $\mu A 7 B H O S A$ are byind regulators with 5.0 V fixad ovtputs and 5.0 A output capabilites. They have the wherent characteristics of the monothie suterminal regulators, i, ese full thermal ovenload, whot circuit and sale-apes protection. All devices are packaged in hemetically sealea 0×39 providing 50 W power dissipation. It the gate operating area is exceeded, the device shets down rather than balling or damaging other system components (Note 1), This feature eliminates costly output circuitry and overly conservative heat sings typical ol high current regulatore buill from divarete components.

- 5.0 A OUTPUT CURRENT
- INTERNAL CURRENT AND THERMAL OVERLOAD PROTECTION
- INTERNAL SHORT CIRCUIT PROTECTION
- LOW DROPOUT VOLTAGE (TYPICALLY 2.3 V 6 5.0 Al
- 50 W POWER DISSIPATION
- STEEL TO-3 PACKACE
- ALL PINFOR-PIN COMPATIBLE WITH THE SH323

Note

 devers wil ret be hilly protected

Connection Dlagram
TO-3 Metal Package

Top Vidw
Order Intomation

Type	Package	Code	Patt No.
$\mu \mathrm{A} 00 \mathrm{~s}$	Metal	GN	MA7EHOSSC
MA7805A	Metal	GN	[ATEHOSASC
$\mu \mathrm{A} 7805$	Melal	G N	[A76HOSS
4A7805A	Metal	GN	MAteHOSAS

Block Diagram

LM140QML
 Three Terminal Positive Regulators

General Description

The monolithic 3-terminal positive voltage regulators employ internal current-limiting, thermal shutdown and safe-area compensation, making them essentially indestructible, If adequate heat sinking is provided, they can deliver over 0.5A output current. They are intended as fixed voltage regulators in a wide range of applications including local (on-card) regulation for elimination of noise and distribution problems associated with single-point regulation. In addition to use as fixed voltage regulators, these devices can be used with external components to obtain adjustable output voltages and currents.
Considerable effort was expended to make the entire series of regulators easy to use and minimize the number of exter-
nal components. It is not necessary to bypass the output, although this does improve transient response. Input bypassing is needed only if the regulator is located far from the filter capacitor of the power supply.

Features

- Complete specifications at 1.0 A and $0.5 A$ loads
(No external components
* Internal thermal overload protection
- Internal short circuit current-limiting
- Outpui transistor safe-area compensation

Connection Diagrams

Steel Metal Can TO-39 Package (H)

20155403
Bottom View
See NS Package Number H03A

TO-3 Metal Can (K)

2015540?
Bottom View
See NS Package Number K02c

Figure 2: Output Noise Voltage

Figure 3: Output Impedance

Figure 4: Peak Available Output Current

Figure 5: Short Circuit Current

Figure 6: Ripple Rejection

Figure 7: Dropout Voltage

Table 4: Electrical Characteristics Of LM123/LM223 $\left(T_{J}=-55\right.$ to $150^{\circ} \mathrm{C}$ for LM123, $T_{J}=-25$ to $150^{\circ} \mathrm{C}$ for LM223 unless otherwise specified).

Symbol	Parameter	Test Conditions	Min.	Typ.	Max.	Unit
V_{O}	Output Voltage Range (Note 2)	$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}, \mathrm{V}_{1}=7.5 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{O}}=0$	4.7	5	5.3	V
Vo	Output Voltage Range (Note 2)	$\begin{array}{ll} T_{J}=T_{\min } \text { to } T_{\max } & \mathrm{P} \leq \mathrm{P}_{\max } \\ \mathrm{V}_{1}=7.5 \text { to } 15 \mathrm{~V} & \mathrm{l}_{\mathrm{O}}=0 \text { to } 3 \mathrm{~A} \end{array}$	4.6		5.4	V
$K_{V 1}$	Line Regulation (Note 3)	$V_{1}=7.5$ to $15 \mathrm{~V} \quad T_{J}=25^{\circ} \mathrm{C}$		5	25	mV
K_{Vo}	Load Regulation (Note 3)	$\mathrm{I}_{\mathrm{O}}=0$ to $3 \mathrm{AV}_{1}=7.5 \mathrm{~V} \quad \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$		25	100	mV
I_{B}	Quiescent Current	$\mathrm{V}_{1}=7.5$ to $15 \mathrm{~V} \quad \mathrm{I}_{\mathrm{O}}=0$ to 3 A		12	20	mA
V_{NO}	Output Noise Voltage	$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C} \quad \mathrm{f}=10 \mathrm{~Hz}$ to 100 KHz		40		$\mu \mathrm{V}_{\mathrm{rms}}$
Ios	Short Circuit Current Limit	$\mathrm{V}_{1}=15 \mathrm{~V} \quad \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$		3	4.5	A
		$\mathrm{V}_{1}=7.5 \mathrm{~V} \quad \mathrm{~T}_{J}=25^{\circ} \mathrm{C}$		4	5	
K_{VH}	Long Term Stability				35	mV

Notes: 1. Although power dissipation is internally limited, specifications apply only for $\mathrm{P} \leq 30 \mathrm{~W}$.
2. Selected devices with tightened tolerance output voltage available.
3. Load and line regulation are specified at constant junction temperature. Pulse testing is required with a pulse width $\leq 1 \mathrm{~ms}$ and duty cycle $\leq 5 \%$.
Table 5: Electrical Characteristics Of LM323 ($\mathrm{T}_{\mathrm{J}}=0$ to $150^{\circ} \mathrm{C}$, unless otherwise specified).

Symbol	Parameter	Test Conditions	Min.	Typ.	Max.	Unit
Vo	Output Voltage Range (Note 2)	$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}, \mathrm{V}_{1}=7.5 \mathrm{~V}, \quad \mathrm{I}^{0}=0$	4.8	5	5.2	V
V_{0}	Output Voltage Range (Note 2)	$\begin{array}{ll} \hline T_{J}=T_{\min } \text { to } T_{\max } & \mathrm{P} \leq \mathrm{P}_{\max } \\ \mathrm{V}_{1}=7.5 \text { to } 15 \mathrm{~V} & \mathrm{I}_{\mathrm{O}}=0 \text { to } 3 \mathrm{~A} \end{array}$	4.75		5.25	V
$\mathrm{K}_{\mathrm{V} 1}$	Line Regulation (Note 3)	$\mathrm{V}_{1}=7.5$ to $15 \mathrm{~V} \quad \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$		5	25	mV
$\mathrm{K}_{\mathrm{V} \text { O }}$	Load Regulation (Note 3)	$\mathrm{l}_{\mathrm{O}}=0$ to $3 \mathrm{AV}_{1}=7.5 \mathrm{~V} \quad \mathrm{~T}_{J}=25^{\circ} \mathrm{C}$		25	100	mV
$I_{\text {IB }}$	Quiescent Current	$\mathrm{V}_{1}=7.5$ to $15 \mathrm{~V} \quad \mathrm{I}_{\mathrm{O}}=0$ to 3 A		12	20	mA
$\mathrm{V}_{\text {NO }}$	Output Noise Voltage	$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C} \quad \mathrm{f}=10 \mathrm{~Hz}$ to 100 KHz		40		$\mu \mathrm{V}_{\mathrm{rms}}$
los	Short Circuit Current Limit	$\mathrm{V}_{1}=15 \mathrm{~V} \quad \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$		3	4.5	A
		$V_{1}=7.5 \mathrm{~V} \quad \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$		4	5	
K_{VH}	Long Term Stability				35	mV

Notes: 1. Although power dissipation is internally limited, specifications apply only for $\mathrm{P} \leq 30 \mathrm{~W}$.
2. Selected devices with tightened tolerance output voltage available.
3. Load and line regulation are specified at constant junction temperature. Pulse testing is required with a pulse width $\leq 1 \mathrm{~ms}$ and duty cycle $\leq 5 \%$.

THREE-TERMINAL 3A-5V POSITIVE VOLTAGE REGULATORS

- OUTPUT CURRENT: 3A
- INTERNAL CURRENT AND THERMAL LIMITING
- TYPICAL OUTPUT IMPEDANCE: 0.01 Ω
- MINIMUM INPUT VOLTAGE: 7.5V
- POWER DISSIPATION: 30W

DESCRIPTION

The LM123, LM223, LM323 are three-terminal positive voltage regulators with a preset 5 V output and a load driving capability of 3A. New circuit design and processing techniques are used to provide the high output current without sacrificing the regulation characteristics of lower current devices.
The 3A regulator is virtually blowout proof.
Current limiting, power limiting and thermal shut-down provide the same high level of reliability obtained with these techniques in the LM209, 1A regulator. An overall worst case specification for the combined effects of input voltage, load current, ambient temperature, and power

dissipation ensure that the LM123, LM223, LM323 will perform satisfactorily as a system element.

SCHEMATIC DIAGRAM

Table 1: Absolute Maximum Ratings

Symbol	Parameter		Value	Unit
V_{1}	Input Voltage		20	V
10	Output Current		Internally Limited	
$\mathrm{P}_{\text {tot }}$	Power Dissipation		Internally Limited	
$\mathrm{T}_{\text {stg }}$	Storage Temperature Range		-65 to 150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {oper }}$	Operating Junction Temperature Range	LM123	-55 to 150	${ }^{\circ} \mathrm{C}$
		LM223	-25 to 125	
		LM323	0 to 125	

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these condition is not implied.

Table 2: Thermal Data

Symbol	Parameter	TO-220	TO-3	Unit
$R_{\mathrm{thj}-\mathrm{case}}$	Thermal Resistance Junction-case Max	3	2	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{\mathrm{th} j \text {-amb }}$	Thermal Resistance Junction-ambient Max	50	35	${ }^{\circ} \mathrm{C} / \mathrm{W}$

Figure 1: Connection Diagram (top view)

Table 3: Order Codes

TYPE	TO-220	TO-3	TEMPERATURE RANGE
LM123		LM123K	$-55^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
LM223		LM223K	$-25^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
LM323	LM323T	LM323K	$0^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$

MANUFACTURER'S LIST CODE TO NAME

CODE	MANUFACTURER	ADDRESS
00779	AMP, INC	$\begin{aligned} & \text { P.0. Box } 3608 \\ & \text { Harrisburg, PA } 17105 \end{aligned}$
01121	ALLEN-BRADLEY COMPANY	1202 South 2nd Street Milwaukee, WI 53204
01139	GENERAL ELECTRIC COMPANY	Silicone Products Business Department Waterford, NY 12188 PHONE: 518-237-3330
01281	TRW, INC.	TRW Semiconductor Division 14520 Aviation Boulevard Lawndale, CA 90260
01295	TEXAS INSTRUMENTS, INC.	Semiconductor Group 13500 North Central Expressway P.O.Box 225012 M/S 49 Dallas, TX 75265
02114	AMPEREX ELECTRONIC CORPORATION	Ferroxcub Division 5083 Kings Highway Saugerties, NY 12477
02660	BUNKER RAMO-ELTRA CORPORATION	Amphenol Division 2801 South. 25th Avenue Broadview, IL 60153
02735	RCA CORPORPATION	Solid State Division Route 202 Somerville, NJ 08876
03797	GENISCO TECHNOLOGY CORPORATION	
04426	ILLINOIS TOOL WORKS, INC.	Licon Division 6615 West Irving Park Road Chicago, IL 60634
04713	MOTOROLA, INC.	Semiconductor Products Sector 5005 East McDowell Road Phoenix, AZ 85008 PHONE: 602-244-7100

CODE	MANUFACTURER	ADDRESS
05245	CORCOM, INC.	1600 Wincheste Road Libertyville, IL 60048
06090	RAYCHEM CORPORATION	300 Constitution Drive Menlo Park, CA 94025
06383	PANDUIT CORPORATION	17301 Ridgeland Tinley Park, IL 60477
06540	MITE CORPORATION	Amatom Electronic Hardware Division 446 Blake Street New Haven, CT 06515
07263	FAIRCHILD CAMERA \& INSTRUMENT	CORPORATION Sub of Schlumberger LTD North American Sales Mail Stop 14-1053 401 Ellis Street P. 0. Drawer 7284 Mt. View, CA 94042
09353	C AND K COMPONENTS, INC.	15 Riverdale Avenue Newton, MA 02158 PHONE: 617-964-6400
11237	CTS KEENE, INC.	$\begin{aligned} & \text { P.O. Box } 1977 \\ & \text { Paso Robles, CA } 93446 \end{aligned}$
12136	PHC INDUSTRIES, INC.	1643 Haddon Avenue Camden, NJ 08103
13103	THERMALLOY COMPANY, INC.	2021 West Valley View Lane P. O. Box 340839 Dallas, TX 75234
13556	TRW CINCH CONNECTORS	Nuline Facility Division of TRW, Inc. New Hope, MN
14099	SEMTECH CORPORATION	652 Mitchell Road Newbury Park, CA 91320 PHONE: 213-628-5392
14655	CORNELL-DUBILIER ELECTRONICS	Div. of Federal Pacific Electric Co Government Contracts Department 150 Avenue L Newark, NJ 07101

CODE	MANUFACTURER	ADDRESS
15542	MINI-CIRCUITS LABORATORY	Div. of Scientific Components Corp. 2625 East 14th Street Brooklyn, NY 11235
16428	BELDEN ELECTRONIC WIRE \& CABLE	Sub of Cooper Industries, Inc. 2200 U.S. Highway 27 South. P.O. Box 1980 Richmond, IN 47374 PHONE: 317-983-5200
18612	VISHAY INTERTECHNOLOGY, INC.	Vishay Resistor Products Division 63 Lincoln Highway Malvern, PA 19355
19209	GENERAL ELECTRIC COMPANY	Battery Business Department 441 Highway N P. O. Box 861 Gainesville, FL 32602 PHONE: 904-462-3911
23936	PAMOTOR DIVISION OF WILLIAM J.	PURDY COMPANY 770 Airport Boulevard Burlingame, CA 94010
26805	OMNI SPECTRA, INC.	Microwave Connector Division Waltham, MA
26806	AMERICAN ZETTLER, INC.	16881 Hale Avenue Irvine, CA 92714
27014	NATIONAL SEMICONDUCTOR CORPORAT	ION 2900 Semiconductor Drive Santa Clara, CA 95051
27264	MOLEX, INC.	2222 Wellington Court Lisle, IL 60532
32997	BOURNS, INC.	Trimpot Division 1200 Columbia Avenue Riverside, CA
33472	ARGOSYSTEMS, Inc.	884 Hermosa Court Sunnyvale, CA 94086
34649	INTEL CORPORATION	3585 SW 198th Avenue Aloha, OR 97005

CODE	MANUFACTURER	ADDRESS
50088	MOSTEK CORPORATION	Sub of United Technologies Corp. 1215 West Crosby Road P.0. Box 169 Carrollton, TX 75006
50434	HEWLETT-PACKARD COMPANY	Optoelectronics Division 640 Page Mill Road Palo Alto, CA 94304
51642	CENTRE ENGINEERING, INC.	2820 E. College Avenue State College, PA 16801
53387	minnesota mining and manufacturi	Ing COMPANY Electronic Products Division 3M Center St. Paul, MN 55101
54893	HEWLETT-PACKARD COMPANY	Microwave Semiconductor Division 350 West Trimble Road San Jose, CA 95131
55154	PLESSEY PERIPHERAL SYSTEMS, INC.	17466 Daimler Avenue P. O. Box 19616 Irvine, CA 92714
55566	R A F ELECTRONIC HARDWARE, INC. 9	95 Silvermine Road Seymour, CT 06483 PHONE: 203-888-2133
56289	SPRAGUE ELECTRIC COMPANY	87 Marshall Street North Adams, MA 01247
58910	ABBOTT TRANSISTOR LABORATORIES,	INC. Transformer Division 639 South Glenwood Place Burbank, CA 91506
59660	TUSONIX, INC.	2155 North Forbes Boulevard Suite 107 Tucson, AZ 85745
59705	STANDEX INTERNATIONAL CORPORATION	N United Service Equipment Co. Div. 1152 Park Avenue Murfreesboro, TN 37130

CODE	MANUFACTURER.	ADDRESS
71279	MIDLAND-ROSS CORPORATION	Cambion Division One Alewife Place Cambridge, MA 02140 PHONE: 617-491-5400
71450	CTS CORPORATION	905 North West Boulevard Elkhart, IN 46514
71984	DOW CORNING CORPORATION	3901 South Saginaw Road Midland, MI 48640
73138	BECKMAN INSTRUMENTS, INC.	Helipot Division Sub of Smith Kline/Beckman Corp. 2500 Harbor Boulevard Fullerton, CA 92634
75915	TRACOR LITTLEFUSE, INC.	800 East Northwest Highway Des Plaines, IL 60016
77969	RUBBERCRAFT CORPORATION OF	CALIFORNIA LTD. 1800 West 220th Street P.0. Box B Torrance, CA 90507 PHONE: 213-328-5402
78277	SIGMA INSTRUMENTS, INC.	170 Pearl Street South Braintree, MA 02184 PHONE: 617-853-5000
80009	TEKTRONIX, INC.	4900 Southwest Griffith Drive P. O. Box 500 Beaverton, OR 97077
81349	MILITARY SPECIFICATIONS	Promultgated by Military Departments/Agencies Under Authority of Defense Standardization Manual 4120 3-M
83330	SMITH HERMAN H. INC.	A North American Philips Company 1913 Atlantic Avenue Manasquan, NJ 08736
88245	WINCHESTER ELECTRONICS	Litton Systems-Useco Division 1536 Saticoy Street Van Nuys, CA 91409
90201	MALLORY CAPACITOR COMPANY	Sub of Emhart Industries, Inc. 4760 Kentucky Avenue P. O. Box 372 Indianapolis, IN 46206

CODE	MANUFACTURER	ADDRESS
91506	AUGAT, INC.	33 Perry Avenue P. 0. Box 779 Attleboro, MA 02703
91637	DALE ELECTRONICS, INC.	2064 12th Avenue P.0. Box 609 Columbus, NE 68601 PHONE: 402-563-6301
91836	KINGS ELECTRONICS COMPANY, INC	40 Marbledale Road Tuckahoe, NY 10707 PHONE: 914-793-5000
92194	ALPHA WIRE CORPORATION	71 Lidgerwood Avenue Elizabeth, NJ 07207 PHONE: 201-925-8000
95146	ALCO ELECTRONIC PRODUCTS, INC.	1551 Osgood Street North Andover, MA 01845
95238	CONTINENTAL CONNECTOR CORPORATI	ON 34-63 56th Street Woodside, NY 11377 PHONE: 212-899-4422
95987	WECKESSER COMPANY, INC.	Chicago, IL
98291	SEALECTRO CORPORATION	225 Hoyt Mamaroneck, NY 10544
99800	AMERICAN PRECISION INDUSTRIES,	INC. Delevan Division 270 Quaker Road East Aurora, NY 14052 PHONE: 716-652-3600

AS2 10-01A
 MODULE CONTROLLER

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording and/or otherwise without the prior written permission of ARGOSystems, Inc. This manual may not be lent, resold, hired out or otherwise disposed of by way of trade in any form of binding or cover other than that in which it is published, without the prior consent of ARGOSystems, Inc.
Chapter Title Page
Preface v
1 GENERAL INFORMATION 1-1
1-1 Introduction 1-1
1-2 Physical and Electrical Description 1-1
2 INSTALLATION 2-1
2-1 Introduction 2-1
3 OPERATION 3-1
3-1 Introduction 3-1
3-2 Controls and Indicators 3-2
3-3 Operating Instructions 3-2
3-4 Set Time on the Controller's Internal Clock 3-2
3-5 Determine IEEE-488 Address of Module Controller 3-9
3-6 Frequency Error Measurement 3-9
3-7 Display Frequency Measurments from Memory 3-11
3-8 Drift Calculations 3-12
3-9 Setting Time on AS210-20 Clock 3-13
3-10 Reading \triangle Time in the AS210-20 Clock 3-14
3-11 Remote Control 3-15
3-12 AS210-01A Remote Time Commands 3-18
3-13 Setting the AS210-01A Time - Remote Command 3-18
3-14 Reading the AS210-01A Time - Remote Command 3-18
3-15 Frequency Generator Module Remote Commands (AS210-03) 3-18
3-16 Digital Delay Generator Module Remote Commands (AS210-04) 3-19
3-17 Frequency Comparator Module Remote Commands (AS210-02) 3-19
3-18 Remote Measurement Commands 3-19
3-19 Remote Determination of Number of Data Points Taken 3-21
3-20 Remote Drift Rate Calculation Command 3-21
3-21 Remote Two Point Drift Rate Calculation Command 3-22
3-22 Remote Data Point Readout 3-24
3-23 Remote Learn Command 3-25
3-24 Remote Self-Test Command 3-25
3-25 AS210 Service Requests 3-26
3-26 Reading the AS210-20 Time - Remote Command 3-26
3-27 Setting Time In the AS210-20 - Remote Command 3-26
3-28 Reading Δ Time From the AS210-20 - Remote Command 3-26
3-29 Synchronizing 1 pps In the AS210-20 - Remote Command 3-28
3-30 Memory Battery Operation 3-28
3-31 Microwave Frequency Generator Module - Remote Commands 3-29

TABLE OF CONTENTS (Continued)

Chapter Title

Page
4-1
THEORY OF OPERATION
4-1 Introduction 4-1
4-2 Module Functional Description 4-1
4-3 Keyboard Logic, Circuit Card A3 4-3
4-4 Display Logic Circuit Card, A4 4-4
4-5 Module Controller CPU and Memory Assemblies 4-4
4-6 Extended PROM GPIA and Timer Logic Circuit Card, A1 4-4
4-6.1 Standby Battery Circuits 4-4
4-6.2 Power-off Timer Circuit 4-5
4-6.3 Interval Timer 4-5
4-7 CPU and EPROM Logic Circuit Card, A2 4-6
4-8 Memory Expansion Circuit Card, A5 4-7
5 MAINTENANCE AND CALIBRATION 5-1
5-1 Introduction 5-1
SECTION
5-2 Preventive Maintenance 5-2
SECTION II
5-3 Performance Tests 5-3
SECTION III
5-4 Troubleshooting Procedure 5-5
5-5 Access to AS210-01A Module Controller 5-5
5-6 Troubleshooting of the Memory Standby Battery 5-5
5-7 Replacement Procedure for the Standby Memory Standby Battery 5-8
6 ILLUSTRATED PARTS LIST 6-1
6-1 Introduction 6-1
6-2 Manufacturer's Code List 6-19

LIST OF ILLUSTRATIONS

Figure	Title	Page
	1	AS210-01A Module Controller
3.1	AS210-01A Front Panel Controls and Indicators	$1-2$
3.2	Operational Flow Diagram	$3-4$
3.3	IEEE-488 Interface Bus Address Select Switch	$3-5$
4.1	Module Controller Functional Block Diagram	$3-16$
5.1	Flow Diagram of the Troubleshooting Procedure for the	$4-2$
5.2	Top View of AS210-01A	$5-4$
5.3	AS210-01A Extended PROM GPIA and Timer Logic Assembly	$5-9$
5.4	AS210-01A CPU and EPROM Logic Assembly A2, Schematic Diagram	$5-11$
5.5	AS210-01A Keyboard Logic Assembly A3, Schematic Diagram	$5-12$
5.6	AS210-01A Display Logic Assembly A4, Schematic Diagram	$5-13$
5.7	AS210-01A Memory Expansion Board A5, Schematic Diagram	$5-14$
6.1	AS210-01A Module Controller Assembly, A1	$6-7$
6.2	AS210-01A Module Controller Assembly, A2	$6-10$
6.3	AS210-01A Keyboard Logic Assembly, A3	$6-13$
6.4	AS210-01A Display Logic Assembly, A4	$6-15$
6.5	AS210-01A Memory Expansion Assembly, A5	$6-18$

LIST OF TABLES

Table	Title $1-1$	AS210-01A Environmental and Physical Data
$3-1$	AS210-01A Front Panel Controls and Indicators	Page
$3-2$	Error Code Displays	$1-3$
$3-3$	AS210-01A GPIB Message Set	$3-2$
$3-4$	Serial Poll Status Description	$3-4$
$5-1$	Preventive Maintenance Checks and Services	$3-17$
$5-2$	Error Code Listing	$3-27$
$5-3$	Common Problems and Possible Problem Location in the AS210-01A Module Controller	$5-2$
		$5-6$

This manual contains installation, operation, and maintenance instructions for the AS210-01A Module Controller. The data contained herein is arranged as follows:

Chapter 1 General Information
Chapter 2 Installation
Chapter 3 Operation
Chapter 4 Theory of Operation
Chapter 5 Maintenance and Calibration
Chapter 6 Illustrated Parts. List

Reference Publications

AS210A-PM	Portable Mainframe Operation and Maintenance Manual
AS210RM, LM	Mainframe Operation and Maintenance Manual
AS210-02	Frequency Comparator Operation and Maintenance Manual
AS210-03	Frequency Generator Operation and Maintenance Manual
AS210-04	Digital Delay Generator Operation and Maintenance Manual
AS210-05	Standby Battery Operation and Maintenance Manual
AS210-06	Microwave Generator Operation and Maintenance Manual
AS210-08	Distribution Amplifier Operation and Maintenance Manual
AS210-20	Time Clock Operation and Maintenance Manual

CHAPTER 1
GENERAL INFORMATION

INTRODUCTION

The AS210-01A Module Controller, illustrated in Figure 1.1, provides control of the other modules in an AS210 Electronic Counter and Frequency Standard Calibration system. The module also provides self-test capability for itself and other modules installed in the mainframe. A built-in memory battery allows the unit to retain data through a two-hour power outage. The module controller can be programmed through its front panel keyboard or through the IEEE-488 interface. Descriptions of other modules in the AS210 series are described in separate publications available from ARGOSystems and listed in the Preface.

PHYSICAL AND ELECTRICAL DESCRIPTION

The module controller contains a front panel keyboard, LED display, and pushbutton controls for operating the AS210 modules. Interface with some modules is transparent from an operator's viewpoint as the built-in microprocessor handles the transmission of instructions and processing of data. In the case of the AS210-02 Frequency Comparator Module and the AS210-20 Time Clock, the module controller interfaces directly with the operator. The programs for calculating drift rate are written into the controller memory and are put into action by keyboard control. The circuitry of the module is mounted on five printed circuit card assemblies. Power is provided by the AS210 Mainframe. The module controller provides control and processing functions only, thus no specification of its operation is applicable outside of environmental and physical data. This information is provided in Table 1-1.

Table 1-1
AS210-01A ENVIRONMENTAL AND PHYSICAL DATA

OPERATING TEMPERATURE	0 to $40^{\circ} \mathrm{C}$
POWER	AS210 Mainframe
WEIGHT	3 pounds

CHAPTER 2

INSTALLATION

INTRODUCTION

The AS210-01A Module Controller plugs into the AS210 Mainframe. The module is electrically connected through the rear connector and mechanically retained via a front panel locking bar on the mainframe. Power and signal interface is provided through the AS210 Mainframe. The module must be inserted into the right side of the mainframe. This is the only location designed for it.

NOTE 1: Power must be off in the AS210 Mainframe when the module controller is removed or installed.

NOTE 2: Due to the high retention force of the module controller's card edge connector, it will be necessary to remove the adjacent single width module, reach behind the module controller, and pull it out while actuating the front panel release mechanism (Figure 3.1).

CAUTION
Do not attempt to use the AS210 series modules in a Tektronix mainframe as severe damage will result.

CHAPTER 3

OPERATION

The AS210-01A Module Controller monitors and controls the modules of the AS210 series. The microprocessor is located in the module controller and operates in conjunction with each of the modules installed to transmit and receive data, process the data, and perform various calculations relative to the module's operation. Most of these functions are transparent to the operator. Both the frequency comparator module and the time clock module, however, operate in conjunction with the controller. This chapter contains operating instructions for the use of the module controller with the AS210-02 Frequency Comparator Module, and the AS210-20 Time Clock Module. These instructions are essentially duplicated in the AS210-02 and AS210-20 manuals. The operating instructions provided are keyed to Figure 3.2, Operational Flow Diagram. A standby battery, located on the rear panel, is used to retain the data in memory if ac power is disconnected. A self-test can be started by the operator with the front panel SELF-TEST pushbutton. This activates a routine that scans the other modules in the system, except the AS210-05 Standby Battery Module and the AS210-08 Distribution Amplifier. The selftest routine detects errors and displays a fault-locating code on the front panel LED display. When an error is found, the program halts and displays an error code. The routine will continue when the CONT function button is pressed. Table 3-2 is an error listing. If the AS210-06 Microwave Generator Module is in the system, a YIG filter tuning calibration is done as part of the self-test.

Table 3-1 and Figure 3.1 describe and illustrate the front panel controls and indicators of the module controller.

TABLE 3-1
AS210-01A FRONT PANEL CONTROLS AND INDICATORS

$\begin{gathered} \text { INDEX NO. } \\ \text { FIGURE. } \\ 3.1 \end{gathered}$	PANEL MARKING	FUNCTION
1	REM	The illuminated pushbutton enables control of the unit through IEEE-488 interface bus.
2	SELF TEST	This illuminated pushbutton starts a self-test scenario that tests all plugins installed in the AS210 Mainframe except the AS210-05 and AS210-08. The self-test mode is also initiated automatically when power is applied to the AS210 Mainframe (see Table 3-2).
3	MEMORY BATTERY STBY-OFF	The STBY position enables a built-in microprocessor battery to supply power to the memory when external power is disconnected.
4	ENTER	Press to enter numerical data.
	CLR	Clears display.
	HALT	Stops the procedure in progress.
	RESET	Returns to start of procedure.
	TIME - DAY, HOUR, MINUTE	Enters or displays time in Julian day, hour, and minute.
	CALC - YEAR, DAY, HOUR	Calculates drift rate per year, day, or hour.
	DSPL	Press to display numerical data or IEEE-488 address.
	CONT	Continues procedure to next operation.
5	NONE	10-digit LED display unit.
6	0-9, -,	Keyboard used to enter numerical data.
7	NONE	Release mechanism.

Figure 3.1 AS210-01A Front Panel Controls and Indicators

Table 3-2
ERROR CODE DISPLAYS

MAINFRAME

Err 0-00 Internal rubidium frequency standard is not locked. Controller will remain in this state until lock is achieved.
Err 0-01 External frequency standard is not locked.

MODULE CONTROLLER

Err 1-01 Display RAM cannot be cleared.
Err 1-02 Display RAM cannot be written to.
Err 1-03 Keyboard interface malfunction (possible stuck key).
Err 1-04 EPROM checksum error. One or more bits originally programmed has changed states.

Err 1-05 RAM read/write error.
Err 1-06 Parallel I/O malfunction (8755).
Err 1-07 No 10 pps to CPU interrupt 7.5.
Err 1-08 Power fail timer not advancing.
Err 1-09 Power fail timer advancing faster than once every 10 seconds.
Err 1-10 Interval timer malfunction (8253).
Err 1-11 IEEE-488 interface malfunction (68488).
Err 1-12 RAM battery back-up completely discharged.
Err 1-13 No modules plugged in to satisfy remote learn command.

FREQUENCY COMPARATOR MODULE

Err 2-01 Output decade registers cannot be cleared.
Err 2-02 Self-test failed to phase lock.
Err 2-03 Measurement complete flip/flop (RR) cannot be reset.
Err 2-04 Self-test measurement did not complete within 0.5 seconds.
Err 2-05 Self-test measurement not within +1 part in 10^{8}.
Err 2-1X Incorrect or missing signal on input X, where $X=1$ to 6 .

Table 3-2 (Continued)

FREQUENCY COMPARATOR MODULE (Continued)

Err 2-20 In drift rate calculation, data points are separated by time interval of less than 1 minute.
Err 2-21 In drift rate calculation, data points are separated by discontinuous time (power failure without frequency standard battery back-up).
Err 2-22 In drift rate calculation, initial data point is overflowed.
Err 2-23 In drift rate calculation, final data point is overflowed.
Err 2-30 Channel number specified has no data associated with it.
Err 2-40 Data points specified are empty (i.e., that number of data points have not previously been stored).
Err 2-50 Remote continue command with module in standby state.

FREQUENCY GENERATOR MODULE

Err 3-03 1 MHz malfunction, no leveling loop indication.
Err 3-04 10 MHz malfunction, no leveling loop indication.
Err 3-X1 Frequency X did not phase lock.
Err 3-X2 Frequency X had no leveling loop indication.

$$
\text { Where } \begin{aligned}
x=0 & =50 \mathrm{MHz} \\
1 & =100 \mathrm{MHz} \\
2 & =200 \mathrm{MHz} \\
3 & =300 \mathrm{MHz} \\
4 & =400 \mathrm{MHz} \\
5 & =500 \mathrm{MHz}
\end{aligned}
$$

DIGITAL DELAY GENERATOR MODULE
Err 4-00 On 10 kHz setting delay ≥ 99 microseconds or on 1 kHz setting delay ≥ 999 microseconds.
Err 4-2X Self-test delay error at Prr X.

$$
\text { Where } \begin{aligned}
x=0 & =1 \mathrm{~Hz} \\
1 & =10 \mathrm{~Hz} \\
2 & =100 \mathrm{~Hz}
\end{aligned}
$$

Err 4-1X Self-test Prr not equal to X.
Err 4-30 Self-test delayed pulse not occurring. Unit not able to be selftested.

Table 3-2 (Continued)

```
MICROWAVE GENERATOR
Err 6-00 Frequency not available
Err 6-0X No leveling loop indication at frequency X
    X = 1 }\quad1\textrm{GHz
    X=2 2GHz
    X=3 3GHz
    • -
    X=9 9\dot{GHz}
Err 6-1X No leveling loop indication at frequency }
    X = 0 10 GHz
    X = 1 }\quad11\textrm{GHz
    X = 2 12GHz
        • -
    X=8 18\dot{GHz}
Err 6-30 1 GHz source not locked
Err 6-40 Calibration in progress
Err 6-50 Unable to level and level chosen is greater than guaranteed by
    performance specifications
```

TIME CLOCK
Err 20-00 Cannot adjust time clock with the SET ENABLE/DISABLE switch in
the DISABLE position
Err 20-01 Time clock not advancing once per second
Err 20-02 Unable to synchronize to external 1 pps
Err 20-03 Unable to measure time offset, no external 1 pps signal

OPERATING INSTRUCTIONS

The following procedures and Figure 3.2 provide the operating instructions for the module controller. Specifically, these instructions tell the operator how to:
A. Set time on the controller's internal clock
B. Determine the IEEE-488 bus address
C. Perform FREQ ERROR measurements with the Frequency Comparator Module
D. Display measurements from memory
E. Perform DRIFT calculations
F. Set time on the AS210-20 Time Clock Module
G. Measure Δ time on the AS210-20 Time Clock module
H. Synchronize the AS210-20 Time Clock Module

The lighted pushbuttons are the only ones that can be used during a routine. The CLR pushbutton only clears the display. In the following procedures, the letters or numbers in parentheses refer to steps on Figure 3.2.

3-4 SET TIME ON THE CONTROLLER'S INTERNAL CLOCK
A. Press the TIME function button (1). Time on internal clock will be displayed (2).
B. Press the illuminated DAY button (3).
C. Enter the number of the Julian day with the keyboard and press the ENTER function button (4). Time on the internal clock will be displayed. The display will return to SEL? after approximately five seconds if no other time button is selected.
$\underset{\substack{\text { Hime in } \\ \text { millots } \\ \text { Stconos }}}{\operatorname{lin}}$

Figure 3.2 Operational Flow Diagram
D. Press the illuminated HOUR button (5) and enter the hour number ($0-24$) with the keyboard. Press ENTER (4). Time on the internal clock will be displayed. The display will return to SEL? after approximately five seconds if no other time button is selected.
E. Press the illuminated MINUTE button (6), enter the correct minute with the keyboard, then press ENTER (4).
F. The correct time is now entered in the module controller's internal clock and displayed on the LED display (2).
G. The time will remain displayed for five seconds and automatically return to "SEL?." To recall time display, press TIME function button (1).

DETERMINE IEEE-488 ADDRESS OF MODULE CONTROLLER

Press the lighted DSPL button (7) to display the IEEE-488 bus address of the module controller (8). This address is set internally with a DIP switch. The IEEE-488 bus control is used as described in the Remote Control section of this chapter. The IEEE-488 bus address will automatically clear from the display after five seconds.

3-6 FREQUENCY ERROR MEASUREMENT
A. Connect the frequency source(s) to be measured to the front panel BNC connector(s) on the AS210-02 Frequency Comparator Module.
B. Set the RATE switch on the AS210-02 Frequency Comparator Module to MAX for continuous sampling or 1 PER HOUR for sampling once per hour. The sampling rate is also a function of the resolution selected as follows:

$\frac{\text { Resolution }}{10^{-8}}$	Samples Per Hour in MAX Mode
10^{-9}	Approximately 3600
10^{-10}	Approximately 600
10^{-11}	Approximately 70
	7

The memory of the module controller can store 500 samples: therefore, the 1 PER HOUR mode may be more useful than the MAX mode when data for several days elapsed time is desired. Up to six inputs can be connected to the frequency comparator. For the purposes of this procedure, it is assumed that only Channel 1 is being used. When more than one signal is connected, the sequence operates so that each channel is observed for one gate period (a function of the resolution selected), then the next channel is observed. It can be seen that as more inputs are connected less samples per hour are taken per input when in the MAX mode.
C. Press lighted CONT pushbutton (A) and CH 1-6 should be displayed (B).
D. Enter a channel number from 1 to 6 with the keyboard and ENTER function button (C). If only channel 1 is used, 1 is automatically selected by the program, by pressing the CONT button.
E. Press CONT (D) and SEL 10^{-}should be displayed (E). Select the desired frequency resolution with the RANGE switch on the AS210-02 Frequency Comparator Module.
F. Press CONT (F). The frequency offset measurement routine now proceeds. 0000p-00 will be displayed until the first measurement is made. Thereafter, the channe 1 number and frequency offset (error) will be displayed for each measurement as it is made until 500 measurements have been taken. A display of 1 398P-09, as shown in Figure 3.2 (G), indicates a freauency offset of 398×10^{-9} on Channel 1 . When 500 measurements have been completed without interruption, the program will halt automatically and 500 oFF will be displayed, indicating that 500 data points have been taken and the program is in an OFF condition. The measurement cycle can also be stopped with the HALT function button. The data point number and oFF will be displayed (I). Measurements can be resumed by pressing CONT.

DİSPLAY FREQUENCY MEASUREMENTS FROM MEMORY

A. Press HALT (H) (if program is running) and then DSPL (J). SEL CH should be displayed (K).
B. Enter a channel number with the keyboard and ENTER function button (L) or push CONT to select channel one. SEL dP should now be displayed (M).
C. Enter a data point number with the keyboard and ENTER function button or push CONT to read the first data point in memory. The number of data points taken during the measurement cycle can be found by pressing DSPL (N). The number of data points and ofF should be displayed (0). For example, 365 ofF. The display will now return to SEL dP (M).
D. After a data point number and ENTER button is pressed, or CONT is pressed, the display will read out in sequence the data point number and channel number (Q) (e.g., P 1 CH), then the time the data point measurement was taken (R)
(e.g., 134-22-56), then the frequency measurement at that data point (S) (e.g., 1 139p-09) is displayed.
E. The measurement process can be resumed by pressing HALT. If frequency comparisons have not been in process, the routine will return to (f) and either more data points displayed or a drift rate calculation performed. If CONT is pressed, the next data point in memory will be displayed as in paragraph D. If the last data point has been displayed, the routine will return to (M) and a new data point can be selected.

DRIFT CALCULATIONS

A. At any time after two or more data points have been collected over a time interval of more than one minute, a frequency drift calculation can be made.
B. Press HALT, then press CALC function button (T). Press HOUR, DAY, or YEAR function button (U) to select period for drift calculation.
C. SEL CH will be displayed (V). Enter the desired channel number with the keyboard and ENTER function button (W). (If CONT is pressed (X), all channels will be computed for frequency drift.)
D. $\quad d P 1$ will be displayed (Y). Enter the desired number for the data point with the keyboard and ENTER function button (Z). The number entered can be anything within the data field from 1 to 500 depending on the resolution selected, length of measurement, time, number of data points, etc. If CONT is pressed (a) the drift calculation will automatically be made on the first through last data points. If CONT is not pressed, then dP 2 will be displayed (b). Enter the desired data point number as with $\mathrm{dP} 1(Z)$.
E. The CALC button will flash while the drift rate is being calculated. This may take tens of seconds. The drift rate will then be displayed for the selected channel (d). For example, $13786 \mathrm{P}-12$ indicates a frequency drift over the period of time selected in step B of 3786 parts out of 10^{12} for Channel 1. The microprocessor computes the best fit line for the data in memory and displays the slope of that line as the drift rate.
F. Pressing CONT (e) at this time will return the routine to point (U) where new timeframes and channels can be selected for a drift calculation, or if CONT were pressed at point (X) the drift rate on the next channel will be displayed.
G. Pressing HALT returns the routine to displaying the frequency offset calculations in process at point (G). If frequency comparisons are not in progress, the routine blanks the display and goes to point (f). The DSPL and CALC buttons are illuminated.

SETTING \triangle TIME ON AS210-20 CLOCK
A. To address any of the AS210-20 Time Clock functions, the -01A module controller must have SEL? displayed. The -20 is then addressed by pressing the number 2 key, then number 0 key, and then the ENTER key (10). The -01A display will then display the same time as is displayed on the -20 time display. At this point (11), the TIME and CALC function buttons will be illuminated. If the operator does not push either button, the display will revert to SEL? in approximately ten seconds.
B. To set the time on the -20 module, the SET ENABLE/DISABLE switch located on the -20 module must be in the ENABLE position. When the -20 module has been addressed (10) and the
time is being displayed (11), the time can be set by pushing the TIME function button (12). When the TIME button is pressed (12) the -01A display will hold the last time displayed (13). The HOUR (14), MIN (16), and CONT (18) buttons will be illuminated. The hour can be changed by pressing the HOUR button (14). The -01A display will be blanked and the desired hour entered via the numeric keys and the ENTER button (15). The -20 display will update immediately but the -01A display will return to the last time displayed (13).

The change time routine can be exited by pressing the CONT button (18). The -01A will show the -20 clock time for approximately 10 seconds (11). If no action is taken, the -01A will then go back to displaying the SEL? message.

If the change routine was not exited, the minutes can be changed by pressing the MIN button (16). The -01A display will be blanked and the desired minutes entered via the numeric keys and the ENTER button (17). When the ENTER button (17) is pressed, the seconds are set to zero, the new minute value is entered and both the -20 and -01 displays (11) will show the updated time. If no further operator action is taken, the -01 display will return to SEL? in approximately ten seconds. The SET ENABLE/ DISABLE switch on the -20 should always be returned to the DISABLE position.

READING \triangle TIME ON THE AS210-20 CLOCK

A. To read the time differential between the 1 pps signal generated by the -20 circuitry and the external 1 pps applied to the -20 1 pps IN connector, the -20 module is addressed by pressing 2, 0, ENTER (10) and then pressing the CALC button (19). The -01A will then display the time difference in seconds between the rising edge of the -201 pps signal and the
rising edge of the external 1 pps signal (20). After five seconds, if the operator has not taken any further action, the -01A will display the -20 time (11). After displaying the time for approximately ten seconds, the -01 A will return to displaying the SEL? message.
B. If it is desired to synchronize, or change the offset of, the internal 1 pps with respect to the external 1 pps , the following sequence of operations would be performed. Place the SET ENABLE/DISABLE switch on the -20 to the ENABLE position. Then address the -20 module (10) and go to the Δ time mode by pressing the CALC button (19). The -01A will display the Δ time (20). Press the CALC button again (21) and the display will go blank (22). Enter the desired offset, from 0 to 999999.9 microseconds, via the numeric keyboard and press the ENTER button (23). When entering the desired offset, do not press the decimal point button. The numbers pressed are automatically right justified. For example, pressing 1, 2, 3, and then ENTER, enters an offset of 12.3 microseconds. When the ENTER button is pressed, the microprocessor in the -01A computes the difference between the measured offset and the desired offset, then instructs the -20 module to make a onetime change in the phase to achieve the desired offset. After the adjustment is made, the offset will again be measured and displayed (20) on the -01A display. The SET ENABLE switch on the -20 should always be returned to the DISABLE position after adjustments are complete.

REMOTE CONTROL

The AS210 system can be remotely controlled via an IEEE-488 instrumentation bus. The DIP switch A2U24 must be set to the desired address (see Figure 3.3). Table 3-3 lists the active controller commands with which the AS210 will respond. The ASCII character strings sent to the AS210 when it is in the listen mode can be terminated in one of two ways.

NOTE: This switch is located on circuit card assembly A2 in the Module Controller.

Figure 3.3 IEEE-488 Interface Bus Address Select Switch

Table 3-3
AS210-01A GPIB MESSAGE SET

MESSAGE ${ }^{1}$	DESCRIPTION	CLASS	OCTAL CODE	REN	IFC	INSTRUMENT RESPONSE
GTL	Return to Local	Addressed CMD	001	T		The AS210-01A returns to
MLA	My Listen Address	Addressed CMD	(2)			AS210-01A becomes addressed to ifsten
MTA	My Talk Address	Addressed CMD	(2)			AS210-01A becomes addressed to talk
UNL	Unlisten	Addressed CMD	077			Becomes unaddressed to listen
UNT	Untalk	Addressed CMD	137			Becomes unaddressed to talk
SPE	Serial Poll Enable	Universal CMD	030			Configures the AS210-01A into the serial poll mode
SPD	Serial Poll Disable	Universal CMD	031			$\begin{array}{ll} \text { Exits serial } \\ \text { poll mode } \end{array}$
IFC	Interface Clear	Single Line Message				Unaddresses the AS210-01A as a talker and as a listener and clears serial poll mode
REN	Remote Enable			T	T	Programs the AS210-01A to remote (concurrent with MLA)
				F		Returns the AS210-01A to local

${ }^{1}$ All Multiline (DIO 1-8) messages are sent with ATN true. ${ }^{2}$ DIO 1-5 are the instrument address. DIO 6-7 define talk (10) or listen (01).
B. A line feed character (carriage returns are ignored).

The following paragraphs describe the programming syntax that should be followed by a controller and the syntax of responses by the AS210 system. Commas should be included in the commands as shown. When the AS210 is in the remote control mode, the REM function button on the module controller front panel is illuminated.

3-12 AS210-01A TIME REMOTE COMMANDS
3-13 SETTING THE AS210-01A TIME - REMOTE COMMAND

$$
T, D x x x, H x x, M x x \quad \text { (controller to AS210) }
$$

where

$$
\begin{aligned}
& T=\text { set time command } \\
& D=\text { day (up to } 3 \text { digit number) } \\
& H=\text { hour (1 or } 2 \text { digit number }<24 \text {) } \\
& M=\text { minute (} 1 \text { or } 2 \text { digit number }<60 \text {) } \\
& X=\text { integer number }
\end{aligned}
$$

3-14 READING THE AS210-01A TIME - REMOTE COMMAND
T ?
response from AS210: $x x x-x x-x x<C R>$

3-15 FREQUENCY GENERATOR MODULE REMOTE COMMANDS (AS210-03)

$$
\text { where } \quad \begin{aligned}
& S 3, L x, F y \text { (controller to AS210) } \\
& S 3=\text { module select command } \\
& L=\text { output level select } \\
& x=1=1 \mathrm{mV} \\
& 2=10 \mathrm{mV} \\
& 3=20 \mathrm{mV} \\
& 4=32 \mathrm{mV} \\
& 5=40 \mathrm{mV} \\
& 6=50 \mathrm{mV}
\end{aligned}
$$

$$
\begin{aligned}
& 7=100 \mathrm{mV} \\
& 8=500 \mathrm{mV} \\
& 9=1000 \mathrm{mV}
\end{aligned}
$$

$\mathrm{F}=$ frequency select
$y=1=1 \mathrm{MHz}$
$2=10 \mathrm{MHz}$
$3=50 \mathrm{MHz}$
$4=100 \mathrm{MHz}$
$5=200 \mathrm{MHz}$
$6=300 \mathrm{MHz}$
$7=400 \mathrm{MHz}$
$8=500 \mathrm{MHz}$

S4, Dxxxxx, Py
(controller to AS210)
where
S4 = module select command
D = delay select
$x=$ delay in 10's of nanoseconds
($0 \leq x \leq 99999$)
$P=$ pulse rate select
$y=1=1 \mathrm{pps}$
$2=10 \mathrm{pps}$
$3=100 \mathrm{pps}$
$4=1 \mathrm{Kpps}$ $5=10 \mathrm{Kpps}$

3-17 FREQUENCY COMPARATOR MODULE REMOTE COMMANDS (AS210-02)

3-18 REMOTE MEASUREMENT COMMANDS
S2,Ax,Ry,Iz
where
S2 = module select command $A=$ accuracy range select $x=1=$ parts in 10^{8} $2=$ parts in 10^{9} $3=$ parts in 10^{10} $4=$ parts in 10^{11}

$$
\begin{aligned}
R= & \text { measurement rate select } \\
& y=1=\text { MAX } \\
& 2=1 \text { PER HOUR } \\
I= & \text { input channel select } \\
& z=\# \text { of inputs to be measured }(1 \leq z \leq 6)
\end{aligned}
$$

A service request is sent when the data memory is full (paragraph 3-21). After each frequency measurement is made, the measured value is placed on the bus in the following format:

$$
\begin{aligned}
x \triangle y y y y P-z z & \text { ECR> } \uparrow \text { LF }> \\
\text { where } x & =\text { input channel number } \\
y & =\text { mantissa } \\
z & =\text { exponent } \\
\Delta & =\text { ASCII space }
\end{aligned}
$$

Before the next measurement is taken, the interface controller must read the measured value from AS210-01A Module Controller.

If the measurement command is sent with a measurement rate select of Ry with either

$$
\begin{aligned}
y=3 & =\text { maximum } \\
4 & =1 \text { per hour }
\end{aligned}
$$

The measurement value will not be placed on the bus. The value is stored in memory. The measurements will be taken at the rate selected. The measurements can be halted, and the data examined at any time, by the commands listed in the following paragraphs.

Any time during the AS210-02 measurement sequence the measurement cycle may be interrupted and the number of data points taken read out.

S2? (controller to AS210)

The AS210 will then report the number of data points taken in the following format:
xxx $0 F F\langle C R><L F\rangle$ where $\Delta=A S C I I S P A C E$

$$
\stackrel{\uparrow}{\text { EOI }} \quad(1 \leq x \leq 500)
$$

The AS210-02 may be commanded to resume its current measurement cycle by the following command:
S2,GO (controller to AS210)

3-20 REMOTE DRIFT RATE CALCULATION COMMAND S2? , Fw, Ix, Xy, Yz (controller to AS210)
where \quad S2? $=$ Module select command
$\mathrm{F}=$ Drift rate calculation interval select
$w=1=$ drift rate per year
2 = drift rate per day
$3=$ drift rate per hour

I = Channel number select
$x=$ input channel that calculation is to be made on ($1 \leq x \leq 6$)
$X \quad=$ Initial data point select
$y=$ data point number ($1 \leq y \leq 500$) (If this part of the command string is omitted, the initial data point will default to 1.)

```
Y = Final data point select
    z = data point number (2 < z < 500) (If this part
        of the command string is omitted, the final
        data point will default to the last point
        taken.)
```

This drift rate calculation may take tens of seconds to perform. When the calculation is complete, a service request will be sent (value 76). The calculated value can then be read.

The drift rate number is reported by the AS210 in the following format

$$
x(-) \text { yyyyP-zz<CR><LF> }
$$

EOI

$$
\text { where } \begin{aligned}
x & =\text { channe } 1 \text { number } \\
y & =\text { mantissa of drift rate } \\
z & =\text { exponent }
\end{aligned}
$$

This command instructs the AS210 to perform a drift rate calculation using all of the data pointsbetween and including those specified by $X y$ and $Y z$. The calculation performed is a least mean square error straight line fit.

3-21 REMOTE TWO POINT DRIFT RATE CALCULATION COMMAND

S2?,CW,Ix, Xy, Yz (controller to AS210)
where \quad S2? $=$ Module select command
$C=$ Drift rate calculation interval select
$w=1=$ drift rate per year
$2=$ drift rate per day
3 = drift rate per hour

```
I = Channel number select
    x = input channel that calculation is to be made
    on (1\leqx\leq6)
X = Initial data point select
        y = data point number (1\leqy\leq500) (If this part
                        of the command string is omitted, the initial
                        data point will default to 1.)
Y = Final data point select
        z = data point number ( }2\leqz\leq500) (If this par
        of the command string is omitted, the final
        data point will default to the last point
        taken.)
```

This drift rate calculation is performed quickly. The calculated value can be read almost immediately after sending the command.

The drift rate number is reported by the AS210 in the following format

$$
\begin{array}{r}
x(-) \text { yyyy } P-z z<C R><L F> \\
\uparrow \\
E O I
\end{array}
$$

$$
\text { where } \begin{aligned}
x & =\text { channe } 1 \text { number } \\
y & =\text { mantissa of drift rate } \\
z & =\text { exponent }
\end{aligned}
$$

This command instructs the AS210 to perform a drift rate calculation using only the two data points specified by $X y$ and $Y z$. The calculation performed is


```
where \(D_{2}=\) frequency difference data of point \(Y_{z}\)
    \(D_{1}=\) frequency difference data of point \(X y\)
    \(T_{2}=\) time data point \(Y z\) was measured
    \(T_{1}=\) time data point \(X y\) was measured
```

3-22 REMOTE DATA POINT READOUT
S2?,Dx (controller to AS210)
where S2? = module select command

```
D = data channel select
    x = channel number ( }1\leqx\leq6
```

The AS210 reports all data points taken for the particular channel in the following format:
(First data point) Pxxx CHy<CR><LF>
aaa-bb-cc<CR><LF>
$\Delta(\mathbb{I}) z z z z P-z_{e}\langle C R\rangle\langle L F\rangle$
(Last data point) Pxxx CHy<CR><LF>
aaa-bb-cc<CR><LF>
$\Delta(\bar{J}) z z z z P-e e\langle C R\rangle\langle L F\rangle$
\uparrow
EOI

```
where x = data point number (1 < x < 500
    y = channel number (1<y<6T
    a = day data point was take\overline{n}
    b = hour data point was taken
    c = minute data point was taken
    z = mantissa of frequency difference data
    e = exponent of frequency difference data
```

where $x=$ module generating the error
$y=$ error code

3-25 AS210 SERVICE REQUESTS
When the AS210 needs to communicate with the controller, it enables the SRQ control line and when the serial poll is enabled, sends out a status byte describing the reason for alerting the controller. Table 3-4 gives a listing of the serial poll status bytes that can be generated by the AS210 and their meaning.

READING THE AS210-20 TIME - REMOTE COMMAND

S20,T? (controller to AS210)
S20,T,HXX,MXX,SXX<CR><LF>
\uparrow (response from AS210) EOI

3-27 SETTING TIME IN THE AS210-20 - REMOTE COMMAND

NOTE
The time on the AS210-20 Module can only be set when the SET ENABLE/DISABLE switch on the AS210-20 Front Panel is in the ENABLE position. This prevents software/hardware malfunctions in devices on the GPIB from resetting the time or resynchronizing the 1 pps output of the AS210-20.

$$
S 20, T, H X X, M X X, S X X \quad \text { (controller to AS210) }
$$

3-28 READING \triangle TIME FROM THE AS210-20 - REMOTE COMMAND
S20,D? (controller to AS210)
S20,D,0.XXXXXXXX S <CR><LF>
\uparrow (response from AS210)
EOI

3-23 REMOTE LEARN COMMAND
L? (controller to AS210)

For each module present in the system, the front panel control settings are given back to the controller in the exact format needed to command those modules. As an example, if modules 2, 3, and 4 were present, the following might be returned by the AS210:

$$
\begin{array}{r}
\mathrm{S} 2, \mathrm{~A} 1, \mathrm{R} 1, \mathrm{I} 2<\mathrm{CR}><\mathrm{LF}\rangle \\
\mathrm{S} 3, \mathrm{~L} 8, \mathrm{~F} 2\langle\mathrm{CR}\rangle\langle\mathrm{LF}\rangle \\
\mathrm{S} 4, \mathrm{D} 98316, \mathrm{P} 5\langle\mathrm{CR}\rangle\langle\mathrm{LF}> \\
\uparrow \\
\mathrm{EOI}
\end{array}
$$

If the AS210-06 module were in the system, its status would be reported as:

$$
S 6, L X, F X\langle C R\rangle\langle L F\rangle
$$

If the AS210-20 module were in the system, its status would be reported as:

$$
S 20, T, H X X, M X X, S X X<C R><L F>
$$

3-24 REMOTE SELF-TEST COMMAND
C? (controller to AS210)

This causes the AS210 to enter the self-test cycle. When the self-test cycle is complete, an SRQ is sent (see paragraph 3-22). If any errors are found, an SRQ is sent (see paragraph 3-22) followed by the specific error message in the following format:

Table 3-4
SERIAL POLL STATUS DESCRIPTION

$\begin{gathered} \text { BIT } \\ 8 \end{gathered}$	$\left\|\begin{array}{c} \text { BIT } \\ 7 \end{array}\right\|$	BIT	$\begin{gathered} \mathrm{BIT} \\ 5 \end{gathered}$	$\left\|\begin{array}{c} \mathrm{BIT} \\ 4 \end{array}\right\|$	$\left\|\begin{array}{c} \text { BIT } \\ 3 \end{array}\right\|$	$\begin{gathered} \text { BIT } \\ 2 \end{gathered}$	$\left\lvert\, \begin{gathered} \text { BIT } \\ 1 \end{gathered}\right.$	STATUS DESCRIPTION
0	1	0	0	0	0	0	0	Frequency standard error*
0	1	0	0	0	0	0	1	AS210-01A module error*
0	1	0	0	0	0	1	0	AS210-02 module error*
0	1	0	0	0	0	1	1	AS210-03 module error*
0	i	0	0	0	1	0	0	AS210-04 module error*
0	1	0	0	0	1	0	1	AS210-06 module calibration complete/ error condition corrected
0	1	0	0	0	1	1	0	AS210-06 Module Error*
0	1	0	0	0	1	1	1	Remote programming syntax error
0	1	0	0	1	0	0	0	AS210 self-test cycle is complete
0	1	0	0	1	0	0	1	The AS210 frequency comparator measurement cycle is complete
0	1	0	0	1	0	1	0	The frequency standard has gone from an unlocked to a locked condition
0	1	0	0	1	1	0	0	The drift rate calculation is complete*
0	1	0	1	0	1	0	0	AS210-20 module error*

[^0]S20, DXXXXXXX (controller to AS210)
7 digits representing the desired Δ time in tenths of a microsecond.

3-30 MEMORY BATTERY OPERATION

The MEMORY BATTERY switch enables an internal nickel cadium battery to supply power to the random access memory (RAM) circuits and internal clock when placed in the STANDBY position. The OFF position of the MEMORY BATTERY switch disconnects the internal battery from the circuit. This switch should be left in the OFF position when the AS210 is not in operation or during equipment storage. In the STANDBY position, frequency measurements will be saved in memory for a period of three hours during system transport or line power failures.

CAUTION

If the AS210 system is to be without power for a period in excess of four hours, place the MEMORY BATTERY in the OFF position. The MEMORY BATTERY may be damaged from prolonged discharge and a corrosive alkali may leak from the nickel cadium batteries. The leakage will cause damage to the surrounding electrical circuitry.

For more information regarding the MEMORY BATTERY, refer to Theory of Operation, Section 4-6.1.

NOTE

In the event battery leakage is encountered, a boric acid solution may be used to neutralize and clean the corrosion from the batteries and electrical circuits.

> S6, Lx, Fy (controller to AS210)
where S 6 = module select command
$L=$ output level select

$$
\begin{aligned}
x=1 & =-35 \mathrm{dBm} \\
2 & =-30 \mathrm{dBm} \\
3 & =-25 \mathrm{dBm} \\
4 & =-20 \mathrm{dBm} \\
5 & =-15 \mathrm{dBm} \\
6 & =-10 \mathrm{dBm} \\
7 & =-5 \mathrm{dBm}
\end{aligned}
$$

$F=$ frequency select

$$
\begin{aligned}
y=1 & =1 \mathrm{GHz} \\
2 & =2 \mathrm{GHz} \\
3 & =3 \mathrm{GHz} \\
4 & =4 \mathrm{GHz} \\
5 & =5 \mathrm{GHz} \\
6 & =6 \mathrm{GHz} \\
7 & =7 \mathrm{GHz} \\
8 & =8 \mathrm{GHz} \\
9 & =9 \mathrm{GHz} \\
10 & =10 \mathrm{GHz} \\
11 & =11 \mathrm{GHz} \\
12 & =12 \mathrm{GHz} \\
13 & =13 \mathrm{GHz} \\
14 & =14 \mathrm{GHz} \\
15 & =15 \mathrm{GHz} \\
16 & =16 \mathrm{GHz} \\
17 & =17 \mathrm{GHz} \\
18 & =18 \mathrm{GHz}
\end{aligned}
$$

CHAPTER 4

THEORY OF OPERATION

INTRODUCTION

This chapter contains a theory discussion of the AS210-01A Module Controller. The unit is preprogrammed to control modules of the AS210 Electronic Counter and Frequency Calibration system. The other modules of this series are described in separate publications listed in the preface. The AS210-01A operates as the control and diagnostic center when installed in the AS210 Mainframe with the other modules. The modules can also be remotely programmed kia an IEEE-488 interface bus. In this case, control is deferred to the bus. The module is physically comprised of five circuit card assemblies A1 through A5. The following description pertains to the hardware aspects of these circuit areas and is keyed to Figure 4.1, Module Controller Functional Block Diagram. The circuit card prefixes are used to identify the location of the circuit on the schematic diagrams of Chapter 5 .

4-2 MODULE FUNCTIONAL DESCRIPTION

The module controller consists of a CPU, $16 \mathrm{~K} \times 8$ erasable programmable read only memory (EPROM) for storage of the program, $4 \mathrm{~K} \times 8$ random access memory (RAM) used as data memory and scratch pad, and an IEEE-488 interface for remote control of the system. When the unit has been addressed over the IEEE-488 bus, control of the system is deferred to the IEEE-488 controller (e.g., keyboard terminal). When the REM button on the module controller front panel is illuminated, the IEEE-488 interface is always in control of the unit and system. Normally, the system is controlled through the module controller's front panel keyboard. A keyboard logic unit and display circuit provide for manual entry and display of data. Data is entered via

Figure 4．1 Module Controller Functional Block Diagram
the keyboard and displayed on a 10 -digit LED display. Programs for entry of the data, calculation of frequency drift rate, and self-diagnosis of the system reside in the firmware (EPROM logic).

4-3 KEYBOARD LOGIC, CIRCUIT CARD A3

The purpose of the keyboard logic circuit is transmission of keyboard entries to the CPU, reception of display data from the CPU, and interface between the CPU, RAM, keyboard, and display. Keyboard interface A3U2 is the basic component of the keyboard logic circuit card. A3U2 transmits the keyboard entries to the CPU over the CPU bus DBO to DB7. SLO through SL1 on A3U2 scan the keyboard, via decoder A3U1, and the display via display MUX A3U4. The SLO through SL1 outputs of A3U2 can be in one of four states, "0", "1", "2", or "3". These states are decoded by A3U1 as follows: State "0" drives RESET and HALT buttons. State "1" drives CONT, DISP, DAY, SELF TEST, MIN, HOUR, YEAR, and REM buttons. State "2" drives ".", 9, CALC, "-", ENT, CLR, TIME, and "8" buttons. State "3" drives "0", "6", "4", "3", "1", "2", "5", and "7" buttons. Pressing one of the above buttons connects the driving signal to one of the sense inputs RLO-RL7 on A3U2. The CPU is then interrupted by A3U2 and transmits the switch position to the CPU. Display data is transmitted from the CPU to the RAM in A3U2. The display is driven and refreshed by A3U2 without disturbing the CPU. Outputs SLO through SL3 from A3U2 are applied to 1 of 16 decoder A3U4. The outputs of A3U4 turn on display driver transistors A3Q1 through A3Q6 and A4Q1 through A4Q6 on the display logic circuit card A4. These transistors are turned on one at a time while the seven-segment display data for the turned-on digit is on the AO-A3 and B0-B3 outputs of A3U2. The LEDs from the pushbuttons are handled like segments on the numeric readout except that the CPU turns on the appropriate segments (numerals). The LEDs in the SELF-TEST and REM buttons are driven separately from I/O ports on A2U19 of the CPU circuit card.

4-4 DISPLAY LOGIC CIRCUIT CARD, A4

The purpose of the display logic circuit is driving segments of the module controller's 10-digit readout in accordance with signals from the keyboard logic card A3. The LED driver inputs DISDRO through DISDR9 have been decoded in the keyboard logic card as described in paragraph 4-3. DISDRO through DISDR4 and DISDR9 turn on transistors A4Q1 through A4Q6 providing five volts to LEDs A4U3 through A4U7 and A4U12. The remaining LEDs (A4U8 through A4U11) are supplied by the transistor drivers in the keyboard logic card, A3. The segment data (SEG A through SEG DP) is provided by the data outputs of A3U2 in the keyboard logic card described in paragraph 4-3. Segment data is provided to the LEDs through drivers A4U1 and A4U2 simultaneously with power to the appropriate digit.

4-5 MODULE CONTROLLER CPU AND MEMORY ASSEMBLIES

The controller CPU and memory is constructed on three circuit card assmblies $A 1, A 2$, and $A 5$. A2 contains the single chip CPU, $4 K$ of EPROM, $4 K$ of RAM, counters, I/O devices, and drivers. A1 contains $4 K$ of EPROM, a programmable timer, counters, IEEE-488 interface and standby battery circuit. A5 contains 8 K of EPROM.

4-6 EXTENDED PROM GPIA AND TIMER LOGIC CIRCUIT CARD, AI

4-6.1 STANDBY BATTERY CIRCUITS

Loss of AC power would result in the loss of data in the RAM. A standby 9.6 volt battery is located in the module controller to provide power to the RAM circuits in the event of a power loss. The backup battery supplies power to the power-off timer circuits as well as the RAM. The AS210-05 Standby Battery Module must also be installed in the mainframe and set in the standby position for the power-off timer to function. The standby battery module is needed to maintain the Rubidium frequency standard in the power-off mode. The system clock is updated to the correct time when normal power is
is restored. Loss of normal power to the module is detected in a power loss detection circuit consisting of A1CR1 and A1CR2 which allows the 9.6 volt module controller battery to supply power to the RAM and power-off timer when the +11V UNREG line to board A1 goes out. The 9.6 volt module controller battery voltage is regulated to five volts through A1U17 and applied to the battery backup $V_{C C}$ terminal of the circuit card. This voltage is also applied to transistor A1Q1 which gates the 10 MHz standard frequency to the power-off timer circuit. Relay A1K1 is used to check the condition of the module controller memory battery. When a BATTERY TEST signal is received the relay closes, applying the module controller battery voltage to load resistor AlR9 and battery condition monitor AlU9. This device has been calibrated via A1R3, AlR2, and A1R6 for four charge conditions, $b-100, b-75, b-50$, and $b-25$, which are displayed on the module controller's display during the self-test routine. The charge condition is monitored by the CPU through outputs 01, 02, 03, and Q4 of Alu9.

4-6.2 POWER-OFF TIMER CIRCUIT

Part of the power-off timer is comprised of transistor driver A1Q1 and frequency dividers A1U1 through A1U8. The frequency divider receives the 10 MHz standard frequency signal from the AS210 Mainframe which is applied to the divider and divided by $10^{8}, 10^{7}, 10^{6}, 10^{5}$, and 10^{4}. The 0.1 pps signal $(\div 10)$ drives counters A2U22, A2U23, and A2U25. The binary output of these counters represents time in 10 -second increments. This data (PAO through PA7, PBO-PB3) is fed to the I/O ports of A2U21. The time data is provided to the CPU over data bus ADO-AD7. The power-off time is calculated by the CPU when power is restored and the CPU is reset. The current value (power restored) of $A 2 U 22, A 2 U 23$, and $A 2 U 25$, is read, then the value read just before power failure is subtracted to arrive at the power-off time.

4-6.3 INTERVAL TIMER

The 10 Hz and 1000 Hz signals are clock 0 and clock 2 respectively, used by the interval timer AlUl2. The timer is controlled by the CPU via the

CPU data bus ADO through AD7. When a $\overline{W R}$ signal is received over the control bus and the timer is appropriately addressed by address bits AO and A1, a value is loaded into the timer from the CPU data bus. When a $\overline{R D}$ signal is received, the timer sends the CPU a counter value over the CPU data bus. The timer also produces three clocks (one is used) for use by the I/O on circuit card A2.

The remaining portions of circuit card A1 are the $4 K \times 8$ EPROM (A1U14 and A1U16) and the IEEE-488 interface. AlU14 and A1U16 are an extension of the EPROMs located on circuit card A2 used for program storage. A1U19 is a general purpose interface adapter that provides an IEEE-488 bus capability for the AS210 system. A1U21 through A2U23 and A1U26 are bidirectional latches controlled by the GPIA A1U19. A1U21 and A1U22 receive and transmit data from the IEEE-488 data bus DIO1 through DIO8. The GPIA is addressed by the CPU via AO, A1, and A2. Data is transferred to and from the CPU and the GPIA over the CPU data bus ADO through AD7. Bus controf signals from and to the GPIA are supplied through bidirectional drivers A1U23 and AlU26. The CPU control bus contains the CLK, $\overline{R D}, \overline{W R}$, RESET, READY, and ALE signals used by the interval timer, extended PROMs and GPIA.

4-7 CPU AND EPROM LOGIC CIRCUIT CARD, A2

The CPU and EPROM card contains the CPU, frequency standard lock detection, external standard lock detection, INT/EXT timebase detection, CPU reset, RAM, EPROM, and I/O. The CPU, A2U20, is an 8-bit data/16-bit address bus device. One-half of the 16-bit address is multiplexed with the eight data bits. An address latch, A2U26, is enabled by the Address Latch Enable (ALE) signal from the CPU to latch the lower eight address bits when they are available on the data bus. EPROMs A2U19 and A2U21 contain their own ALE input, therefore, the data/address bus can be applied directly to these EPROMs. The I/O ports on A2U19 receive the mainframe standby battery charge condition from circuit card A1 and a preset IEEE-488 bus address from DIP switch A2U24 (see Figure 3.3). This is an 8-bit switch that uses the five LSBs to set a binary address from 0-31. When this address is received over the IEEE-488
bus, the CPU is informed that data is available to it from the IEEE bus. The bus can be used to remotely control the module controller and all other modules of the AS210 series. The CPU control bus is applied to RAMs A2U7 through A2U14, to the EPROMs, to the keyboard interface in A3 and to the interval timer in A1. When called, programs stored in the EPROMs are fetched by the CPU to perform data processing functions. The I/0 ports on A1U21 receive a signal from the mainframe FREQ STD LOCK which alerts the CPU to an unlock condition in the 10 MHz frequency standard circuits. When an external frequency standard is being used, an EXT LOCK signal is received by A2U21 from the external time base selector circuits in the AS210 Mainframe, which informs the CPU of a locked condition. The INT/EXT signal from the mainframe is transferred to the CPU via I/O A2U21 to inform the CPU of the use of the internal Rubidium frequency standard or an external standard. Transistors A2Q1, Q2, and Q3 are a part of a power loss circuit to sense a power loss and lock up the CPU via the $\overline{R E S E T}$ input. This prevents the CPU from processing data incorrectly when power is restored. The 2 MHz crystal is part of the CPU clock circuit.

4-8 MEMORY EXPANSION CIRCUIT CARD, A5

The AS210-01A contains the memory expansion card A5 to accommodate the additional software/firmware for operating the AS210-06 and AS210-20 plug-ins, and to perform the least-mean-squares curve fit routine for the drift rate calculation. When fully populated, U5 through U8 (EPROM) will contain an additional 8 K of program storage, and U10 through U17 (RAM) will contain an additional 4 K words of variable storage. As used in the AS210-01A, this board will contain three EPROMs (U5, U6, U7) and its associated address decoding circuitry. The remaining EPROMs and RAM storage will be used for future expansion.

CHAPTER 5

MAINTENANCE AND CALIBRATION

5-1 INTRODUCTION

The purpose of this chapter is to provide maintenance and calibration data for the AS210-01A Module Controller. Section I covers routine preventive maintenance procedures. Section II outlines performance tests for the module controller and Section III describes troubleshooting data. The AS210-01A Module Controller does not require any calibration. Figures 5.3 through 5.7 are the schematic diagrams of the AS210-01A. Please contact the factory for any assistance required in the maintenance or servicing of the AS210-01A.

SECTION I

5-2

PREVENTIVE MAINTENANCE

Table 5-1 lists preventive maintenance checks and services which should be performed regularly.

Table 5-1
PREVENTIVE MAINTENANCE CHECKS AND SERVICES

ITEM	PROCEDURES
CABLES	Visually inspect cables for strained, cut, frayed, or other damaged insulation.
CLEANLINESS	Make sure the exterior surfaces of the unit are clean. If necessary, clean exterior surfaces as follows: A. Remove the dust and loose dirt with a clean soft cloth. B. Remove dust or dirt from plugs and jacks with a brush.
	WARNING Use only warm soapy water for cleaning all plastic parts. Many solvents will cause the plastic to become brittle.
CORROSION	Make sure exterior surfaces of unit are free of rust and corrosion.
PRESERVATION	Inspect exterior surfaces of the unit for chipped paint or corrosion. If necessary, spot-paint surfaces as follows:
	A. Remove rust and corrosion from metal surfaces by lightly sanding them with sandpaper.
	B. Brush two coats of paint on base metal to protect it from further corrosion.

SECTION II

5-3 PERFORMANCE TESTS

Figure 5.1 is a flow chart for the performance tests required to determine if the AS210-01A Module Controller is operating properly. Please contact the factory for any assistance required.

Figure 5.1 Flow Diagram of the Troubleshooting Procedure for the AS210-01A Module Controller

5-4 TROUBLESHOOTING PROCEDURE

Troubleshooting of the module controller is generally limited to observation of the error codes displayed on the front panel. Table 5-2 lists the error codes that are displayed when a malfunction occurs with recommended solutions. Table 5-3 contains common problem symptoms with possible locations of malfunctions.

5-5 ACCESS TO AS210-01A MODULE CONTROLLER

Please reference the AS210 Mainframe Manual for the disassembly procedure of the AS210 system to allow access to the AS210-01A Module Controller. Access to the module circuitry itself is gained by removing the two metal side covers with a small straight-blade screwdriver. Place the module on its side so that the cover is facing up. Starting with the end toward the edge connector, insert the screwdriver into one of the slots where the cover mates with the module chassis and pry the cover up. It will be necessary to move toward the front panel of the module while continuing the prying action to loosen one side of the cover from the module, then the other side. Repeat this technique to remove the cover on the other side of the module also.

5-6 TROUBLESHOOTING THE STANDBY MEMORY BATTERY

If the Error Code, Err 1-12, continues to appear during self-test and the system has been operated for at least four hours with the memory battery in the off position, then check fuse F1 located on the Al circuit board in the module controller. If the fuse $F 1$ is not blown then the memory battery may need to be replaced.

Table 5-2
ERROR CODE LISTING

ERROR CODE	PROBLEM	RECOMMENDED SOLUTION
1-01	Display RAM cannot be cleared	Check RAMs (A2U7-A2U14) and associated circuits
1-02	Display RAM cannot be written to	Check RAMs (A2U7-A2U14) and associated circuits
1-03	Keyboard interface malfunction	Possible stuck key
1-04	EPROM checksum error; one or more bits originally programmed has changed states	Check EPROMs (AlU14, AlU16, A2U19, A2U21, A5U5 through through A5U8)
1-05	RAM read/write error	Check RAMs (A2U7-A2U14) and associated circuits
1-06	Parallel I/O malfunction	Check 8755's (A2U19, A2U21)
1-07	No 10 pps to CPU interrrupt 7.5	Check internal timer (A1U12)
1-08	Power fail timer not advancing	Check counters (A1U1-A1U8)
1-09	Power fail timer advancing faster than once every 10 seconds	Check counters (A1U1-A1U8)
1-10	Interval timer malfunction	Check interval timer (A1U12)
1-11	IEEE-488 interface malfunction	Check IEEE-488 interface I.C. (A1U19)
1-12	RAM battery back-up completely discharged	Press CONT; charge battery by continuing to run AS210 system; if battery does not charge, refer to Section 5-6
1-13	No modules plugged in to satisfy remote learn command	Install AS210-type modules to satisfy this command

Table 5-3
COMMON PROBLEMS AND POSSIBLE PROBLEM LOCATION IN THE AS210-01 MODULE CONTROLLER

COMMON PROBLEM	POSSIBLE PROBLEM LOCATION
RANDOM DISPLAY	CPU (A2U20) or EPROM (A1U14, A1U16, A2U19, A2U21, A5U5, A5U6, A5U7) circuits
SELF-TEST NOT INITIATED UPON POWER-UP	Controller standby battery is not in OFF position upon power-up
BLANK DISPL̇AY	Check +5 volt power supply to display; check RAMs (A2U7-A2U14)
AS210-01A DOES NOT EXIT SELF TEST	$\begin{aligned} & C P U(A 2 U 20) \text { or EPROM (A1U14, A1U16, } \\ & A 2 \cup 19, ~ A 2 U 21, ~ A 5 \cup 5, ~ A 5 \cup 6, ~ A 5 \cup 7) \end{aligned}$
IEEE-488 INTERFACE PROBLEM	Check address DIP switch (A2U24); check IEEE-488 interface I.C. (A1U19)

The memory battery is located on the inside rear panel of the module controller as in Figure 5.2 Access to the memory battery is obtained by removing the three (3) screws located on the backside in the upper leftand right-hand corners of the module controller's rear panel. The two (2) screws located along the top of circuit boards A1 and A2 must also be removed. The top cover may now be lifted and slide out the rear of the module controller assembly. After the top cover has been removed, the battery holder can be seen on the rear panel. To remove the battery it is necessary to only remove the top screw which holds the battery holder lid in place. The memory battery may now be replaced and the above procedure reversed to reassemble the module controller assembly.

Figure 5.2 Top View of AS210-01A

CHAPTER 6 ILLUSTRATED PARTS LIST

6-1 INTRODUCTION

This chapter contains an illustrated parts list for the AS210-01A Module Controller. The assembly numbers and assembly title are listed at the top of the parts lists. The parts lists are divided into six columns and arranged in the following order:

Column 1 - Item Number
Column 2 - Quantity per assembly.
Column 3 - Manufacturer's Code
Column 4 - Part Number
Column 5 - Description
Column 6 - Reference Designation

ASSEMBLY NUMBER 117168 - MODULE CONTROLLER AS210-01A

ITEM	QTY	$\begin{aligned} & \text { MANUFAC- } \\ & \text { TURER'S } \\ & \text { CODE } \\ & \hline \end{aligned}$	PART NUMBER	DESCRIPTION	REF. DESIG.
1	1	33472	117193	Front panel assembly	
2	1	33472	117255	Module controller assy.	A1
3	1	33472	117260	Module controller assy.	A2
4	1	33472	125465	Memory expansion	A5
5	2	33472	117325	Frame section modification	
6	1	33472	117344	Cable assembly, ribbon 50 wire	
7	1	33472	117350-02	Cable assembly, ribbon 50 wire	
8	2	33472	117353-01	Cable assembly, 2 wire	
9	1	33472	117264	9.6V Nicad battery	
10	1	33472	117259-01	Nicad battery holder	
11	1	33472	117259-02	Nicad battery holder cover	
12	10	81349	MS51957-29	Screw PH \#6-32 $\times 7 / 16^{\prime \prime}$	
13	12	81349	NAS620-C6	Reduced 0/D flat washer	
14	12	81349	MS35338-136	Split lockwasher \#6	
15	2	81349	NAS671-C6	Small pat. hex nut \#6-32	
16	6	81349	MS51957-15	Screw PH \#4-40 $\times 3 / 8$	
17	4	07540	9742-SS-0632	Standoff, hex, 6-32 thread 7/8	
18	6	81349	MS35338-134	Split lock washer \#4	
19	6	81349	NAS671-C4	Small pat. hex nut \#4-40	
20	6	81349	NAS620-C4	Reduced 0/D flat washer \#4	
21	4	80009	4535-632-A-0	Stand-off	
22	1	80009	366-1690-01	Latch pull	

MANUFACTURER'S
ITEM QTY CODE PART NUMBER DESCRIPTION REF.DESIG.

23	1	80009	105-0719-00	Latch, retainer
24	1	80009	105-0718-01	Latch
25	1	80009	426-1245-00	Frame, left, bottom
26	2	80009	426-1246-00	Frame, right, bottom and top
27	4	80009	407-1693-00	Mount
28	2	80009	200-1837-02	Top and bottom cover
29	1	80009	426-1245-01	Frame, left, top
30	1	80009	214-1061-00	Tension spring
31	2	80009	337-1399-00	Side cover
32	2	80009	351-0449-00	PWB guide
33	1	80009	386-3356-00	```Panel, rear (altered item)```
34	2	80009	386-3657-01	Guide pin
35	8	81349	MS24693-C26	Screw 6-32 $\times 4 / 8 \mathrm{FLH}$
36	1	81349	MS51957-3	Screw $2-56 \times 1 / 4 \mathrm{PNH}$
37	4	81349	MS51957-4	Screw $2-56 \times 5 / 16$ PNH
38	4	81349	NAS671-C2	Nut 2-56 SM pattern
39	4	81349	MS35338-134	Washer \#2 split
40	6	81349	MS51957-30	Screw 6-32 $\times 1 / 2 \mathrm{PNH}$
41	4	81349	213-0192-00	Screw $6-32 \times 1 / 2$ selftapping, fillester head

ASSEMBLY NUMBER 117193 - FRONT PANEL ASSEMBLY, MODULE CONTROLLER AS210-01A

ITEM	QTY	MANUFACTURER'S CODE	PART NUMBER	DESCRIPTION	REF. DESIG.
1	1	33472	117275	Keyboard logic assembly	A3
2	1	33472	117280	Display logic assembly	A4
3	1	33472	117180-01	Panel, front, lexan	
4	5	06540	9725-A-0440	Standoff, hex, $3 / 16^{\prime \prime} \times 5 / 16^{\prime \prime}$	
5	3	06540	4505440-A0	Standoff, hex 3/16 x 1/2"	
6	5	06540	2051440-A0	Standoff, hex, $3 / 16 \times 2 / 16^{\prime \prime}$	
7	3	81349	MS24693-C9	$\begin{aligned} & \text { Screw, flathead, } \\ & \# 4-40 \times 7 / 8 \mathrm{~L} \end{aligned}$	
8	8	81349	MS35338-135	Split lockwasher \#4	
9	5	81349	MS24693-C6	$\begin{aligned} & \text { Screw, flathead, } \\ & \# 4-40 \times 1 / 2 \mathrm{~L} \end{aligned}$	
10	16	81349	NAS620-C4	Reduced 0/D flatwasher \#4	
11	8	81349	NAS671-C4	SM pat hex nut \#4	
12	1	33472	117180-02	Subpanel, plastic	
13	1	33472	117180-03	Panel, rear	

ASSEMBLY NUMBER 117255 - EXTENDED PROM, GPIA AND TIMER LOGIC (A1)

MANUFACTURER'S ITEM QTY CODE

1	1	33472	117258	PWB 117258	
2	REF	33472	117256	Schematic 117256	
3	REF	33472	117255	Assembly drawing 117255	
4	12	81349	CK05BX104K	.lufd, 10%, ceramic capacitor	C3-C14
5	3	51642	$\begin{aligned} & 300-50-601- \\ & 105 \mathrm{M} \end{aligned}$	1ufd, 20\%, ceramic capacitor	$\mathrm{C} 1, \mathrm{C} 2, \mathrm{C} 16$
6	1	81349	CK05BX473K	.047 ufd, 10%, ceramic capacitor	Cl 5
7	1	78277	60-RE1S-5DC	SPDT 5V relay	K1
8	4	27014	1N4002	Semiconductor	CR1-4
9	2	81349	RCR07G103JS	10K ohm $5 \%, 1 / 4 \mathrm{~W}$, carbon comp	R1,R15
10	3	81349	RCR07G472JS	4.7K ohm 5%, 1/4W, carbon comp	R7, R8, R12
11	1	81349	RN55D5360F	536 ohm 1\%, 1/4W, fixed film	R2
12	1	81349	RN55D4220F	$\begin{aligned} & 422 \text { ohm } 1 \%, 1 / 4 \mathrm{~W}, \\ & \text { fixed film } \end{aligned}$	R3
13	1	81349	RN55D2261F	$\begin{aligned} & 2.26 \mathrm{~K} \text { ohm } 1 \%, 1 / 4 \mathrm{~W}, \\ & \text { fixed film } \end{aligned}$	R6
14	1	81349	RCR42G151JS	150 ohm 5%, $2 W$, carbon comp	R9
15	3	81349	RCR07G102JS	1 K ohm $5 \%, 1 / 4 \mathrm{~W}$, carbon comp.	R10,R13,R14
16	1	81349	RCR07G471JS	470 ohm 5\%, 1/4W, carbon comp	R11
17	1	81349	RCR42G751JS	750 ohm 5\%, 2W, carbon comp	R4
18	1	27014	2N2369A	NPN transistor	Q1

ITEM	QTY	MANUFAC- TURER'S CODE	PART NUMBER	DESCRIPTION	REF. DESIG.
19	1	75915	27502.0	Fuse, axial 2 amp	F-1
20	2	71279	1802752-02-5	Terminal, bifurcated	
21	1	02114	VK200-20/4B	Wideband choke	L1
22	1	53387	3433-2202	Male header, 50 pin	J2
23	3	59730	TYB-23M	TY-RAP, cable tie	
24	1	27014	74LS73N	JK flip flop	U20
25	2	27014	74C04N	Hex inverter	U18, U11
26	1	27014	74C10N	3 input nand	U15
27	2	27014	74C20N	4 input nand	U10, U13
28	7	27014	74C90N	Decade counter	U1-U6, U8
29	1	01295	74LS90	Decade counter	U7
30	2	34649	MK2716T-6	EPROM $2 \mathrm{~K} \times 8$	U14, U16
31	1	34649	C8253-5	Timer	U12
32	2	01121	316E302622	Resistor network	U24, U25
33	1	27014	LM3914	Dot/bar display driver	U9
34	4	04713	MC3448AL	Transceiver	U21-U23, U26
35	1	04713	MC68488P	GPIA	U19
36	1	27014	LM340T-5	5 V regulator	U17
37	14	01295	C9314-02	IC, socket	
38	6	01295	C9316-02	IC, socket	
39	1	01295	C9318-02	IC, socket	
40	3	01295	C9324-02	IC, socket	
41	1	01295	C9340-02	IC, socket	

ASSEMBLY NUMBER 117260 - CPU AND EPROM LOGIC (A2)

ITEM	QTY	MANUFACTURER'S CODE	PART NUMBER	DESCRIPTION	REF. DESIG.
1	1	33472	117263	PWB 117263	
2	REF	33472	117261	Schematic 117261	
3	REF	33472	117260	Assembly drawing 117260	
4	1	81349	CM05ED220J03	22pfd dipped silver mica capacitor	C3
5	2	56289	$\begin{aligned} & 196 \mathrm{DI} 56 \times 9020 \\ & \text { KA1 } \end{aligned}$	15 ufd 10%, solid tantalum capacitor	$\mathrm{Cl}, \mathrm{C} 4$
6	7	81349	CK05BX104K	. 1 ufd 10%, ceramic capacitor	C5-C11
7	2	- 27014	2N2222A	Transistor	Q2, Q3
8	1	27014	PN3644	Transistor	Q1
9	1	27014	1N4002	Semiconductor	CR1
10	1	50434	5082-4487	Light emitting diode	CR2
11	6	81349	RCR07G103JS	10K ohm $5 \%, 1 / 4 \mathrm{~W}$, carbon composition	$\begin{aligned} & \text { R2-R3,R5 } \\ & \text { R8,R18,R19 } \end{aligned}$
12	4	81349	RCR07G102JS	1 K ohm $5 \%, 1 / 4 \mathrm{~W}$, carbon composition	$\begin{aligned} & R 4, R 6, R 7 \\ & R 9 \end{aligned}$
13	1	75378	MP020	Crystal, 2 MHz	Y1
14	1	81349	RCR07G333JS	33 K ohm $5 \%, 1 / 4 \mathrm{~W}$, carbon composition	R1
15	1	27264	09-60-1021	Wafer, 2 pin	34
16	2	53387	3433-2202	Male header, 50 pin	J2, 33
17	1	02114	VK200-20/4B	Wideband choke	L1
18	2	27014	74 COON	Quad 2-input nand	U1, U2
19	1	27014	74 CO 4 N	Hex inverter	U6
20	1	27014	74 C 20 N	Dual 4 input nand	U5
21	3	27014	74C93N	Counter	U22, U23, 122 5
22	1	01295	75492	Counter	U17
23	1	34649	8085	CPU	U20

MANUFACTURER'S
ITEM QTY CODE

PART NUMBER DESCRIPTION
REF. DESIG.

24	1	34649	8212	Latch	U26
25	7	3464	P8216	Bus driver	$\begin{aligned} & \mathrm{U} 3, \mathrm{U4}, \mathrm{U} 15, \\ & 1116,1127, \mathrm{U} 28, \\ & U 29 \end{aligned}$
26	2	34649	8755	E PROM $2 \mathrm{~K} \times 8$	U19,1321
27	8	34649	P2141L-5	$4 \mathrm{~K} \times 1$ RAM	U7-14
28	1	01121	316 A103	Resistor pack	U18
29	1	53387	435166-5	Dip switch (install after W. solder)	U24
30	1	01121	1104472	Resistor network	U30
31	8	01295	C9314-02	IC, socket	
32	9	01295	C9316-02	IC, socket	
33	8	01295	C9318-02	IC, socket	
34	1	01295	C9324-02	IC, socket	
35	3	01295	C9340-02	IC, socket	

Figure 6.2 AS210-01A Module Controller Assembly, A2

ASSEMBLY NUMBER 117275 - KEYBOARD LOGIC ASSEMBLY (A3)

MANUFACTURER'S

ITEM	QTY	CODE	PART NUMBER	DESCRIPTION	REF. DESIG.
1	1	33472	117278	PWB 117278	
2	REF	33472	117267	Schematic 117276	
3	REF	33472	117275	Assembly Drawing 11725	
4	1	27264	22-03-2081	Wafer, 8 pin	P1
5	1	27264	22-03-2121	Wafer, 12 pin	P2
6	3	81349	CK05B×104K	.lufd 10% ceramic capacitor	C2, C3, C4
7	1	56289	$\begin{aligned} & \text { 196D156×9020 } \\ & \text { KA1 } \end{aligned}$	15 ufd, 10% solid tantalum capacitor	C1
8	1	02114	VK200-20/4B	Wideband choke	L1
9	14	04426	39-12101	Switch, pushbutton	$\begin{aligned} & \text { S1-10,S12 } \\ & \text { S16,S25,S14 } \end{aligned}$
10	12	04426	39-12201	Switch, LED pushbutton	$\begin{aligned} & \text { S11, 13, 15, } \\ & 17, S 18-24, \\ & \text { S26 } \end{aligned}$
11	1	09353	7101-J1-CQ-E	Switch, rocker, SPDT	S27
12	1	53387	33433-2202	Male header, 50 pin	J1
13	1	27264	09-60-1021	Wafer, 2 pin	J2
14	1	01295	$74 \mathrm{LS138N}$	IC	U1
15	1	01295	74LS154N	IC	U4
16	1	01295	75492N	IC	U5
17	1	75378	750-83-R33	Sip resistor pack	U6
18	1	34649	P8279-5	Keyboard/display interface	U2
19	6	27014	74C10N	IC	U3
20	6	27014	PN3644	Transistor	Q1-Q6
21	6	81349	RCR05G103JS	10K ohm 5%, $1 / 8 \mathrm{~W}$, carbon composition	$\begin{aligned} & R 3, R 5, R 7, \\ & R 9, R 12, R 14 \end{aligned}$

ITEM	MANUFAC- TURER'S CODE				PART NUMBER	DESCRIPTION

Figure 6.3 AS210-01A Keyboard Logic Assembly, A3

ASSEMBLY NUMBER 117280 - DISPLAY LOGIC ASSEMBLY (A4)

ITEM	QTY	MANUFACTURER'S CODE	PART NUMBER	DESCRIPTION	REF. DESIG.
1	1	33472	117283	PWB 117283	
2	REF	33472	117281	Schematic 117281	
3	REF	33472	117280	Assembly Drawing 117280	
4	4	81349	CK05BX104K	.lufd 10%, ceramic capacitor	C1-C4
5	1	27264	22-02-2081	Connector 8 pin	J1
6	1	27264	22-02-2121	Connector 12 pin	J2
7	6	27014	PN3644	Transistor	Q1-Q6
8	6	81349	RCR05G103JS	10K ohm $5 \%, 1 / 8 \mathrm{~W}$, carbon composition	$\begin{aligned} & R 2, R 4, R 6, \\ & \text { R8,R10,R12 } \end{aligned}$
9	6	81349	RCR05G102JS	1 K ohm $5 \%, 1 / 8 \mathrm{~W}$, carbon composition	$\begin{aligned} & \text { R1,R3,R5, } \\ & \text { R7,R9,R11 } \end{aligned}$
10	8	81349	RCR05G510JS	51 ohm 5%, $1 / 8 \mathrm{~W}$, carbon composition	R13-R20
11	10	50434	5082-7730	7 segment display	U3-U12
12	2	01295	75492	Hex driver	U1, U2

[20000000 (1)	
$\square \square$	(12) 0000000000000^{7}

Fïgure 6.4 AS210-01A Display Logic Assembly, A4

ASSEMBLY NUMBER 117344 - CABLE ASSEMBLY

ASSEMBLY NUMBER 117350 - CABLE ASSEMBLY

1	3	53387	$3425-6000$	Connector, 50 pin
2	2	53387	$3425-6000$	Connector, 50 pin
3	2	53387	$3425-6000$	Connector, 50 pin
4	$16^{\prime \prime}$	53387	$3365-50$	Cable, 50 wi re ribbon
5	$8^{\prime \prime}$	53387	$3365-50$	Cable, 50 wi re ribbon
6	$6^{\prime \prime}$	53387	$3365-50$	Cable, 50 wi re ribbon

ASSEMBLY NUMBER 117353-01 and 02 - CABLE ASSEMBLY

1	1	27264	$09-50-7021$	Connector, 2 pin
2	2	27264	$09-50-7021$	Connector, 2 pin
3	4	27264	$08-50-0132$	Pin, crimp
4	4	27264	$08-50-0132$	Pin, crimp
5	$9^{\prime \prime}$	29005	EXE26 19/38	Wire, 26 gauge
6	$\mathrm{~A} / \mathrm{R}$		EXE20	Wire, 20 gauge

ITEM	QTY	MANUFACTURER'S CODE	PART NUMBER	DESCRIPTION	REF. DESIG.
1	1	33472	125468	PWB	
2	REF	33472	125467	Master pattern	
3	REF	33472	125469	Silkscreen	
4	REF	33472	125466	Schematic	
5	4	34649	D2716	IC PROM	U5,6,7,8
6	2	81349	$74 \mathrm{CO4N}$	IC hex inverter	U3,4
7	1	04713	MM74C20N	IC, 4 input nand gate	U9
8	2	04713	MM74C10N	IC, 3 input nand gate	U1,2
9	10	81349	CK05B×104K	.1uF, 10%, ceramic capacitor	C1-C10
10	1	53387	3433-2202	Connector, 50 pin	J1
11	2	27264	09-60-1021	Connector, 2 pin	J2-3
12	8	01295	C9318-02	Socket, 18 pin	
13	5	01295	C9314-02	Socket, 14 pin	
14	4	01295	C9324-02	Socket, 24 pin	
15	4	55566	4535-632-A-0	Standoff 6-32 x 9/16	
16	4	81349	NAS671-C6	Nut, small pattern hex	
17	4	81349	NAS620-C6	Washer, reduced 0/D flat, \#6	
18	4	81349	MS35338-136	Washer, split, \#6	

Figure 6.5 AS210-01A Memory Expansion Assembly, A5

This section includes all manufacturer's of materials used in the AS210 system. The list is arranged in numerical order by code.

CODE	MANUFACTURER	ADDRESS
00779	AMP, INC	$\begin{aligned} & \text { P.0. Box } 3608 \\ & \text { Harrisburg, PA } 17105 \end{aligned}$
01121	ALLEN-BRADLEY COMPANY	1202 South 2nd Street Milwaukee, WI 53204
01139	GENERAL ELECTRIC COMPANY	Silicone Products Business Department Waterford, NY 12188 PHONE: 518-237-3330
01281	TRW, INC.	TRW Semiconductor Division 14520 Aviation Boulevard Lawndale, CA 90260
01295	TEXAS INSTRUMENTS, INC.	Semiconductor Group 13500 North Central Expressway P. 0. Box 225012 M/S 49 Dallas, TX 75265
02114	AMPEREX ELECTRONIC CORPORATION	Ferroxcub Division 5083 Kings Highway Saugerties, NY 12477
02660	BUNKER RAMO-ELTRA CORPORATION	Amphenol Division 2801 South. 25th Avenue Broadview, IL 60153
02735	RCA CORPORPATION	Solid State Division Route 202 Somerville, NJ 08876
03797	GENISCO TECHNOLOGY CORPORATION	```Electronics Division 18435 Susana Road Rancho Dominguez, CA 90221 PHONE: 213-537-4750```
04426	ILLINOIS TOOL WORKS, INC.	Licon Division 6615 West Irving Park Road Chicago, IL 60634
04713	MOTOROLA, INC.	Semiconductor Products Sector 5005 East McDowell Road Phoenix, AZ 85008 PHONE: 602-244-7100
05245	CORCOM, INC.	1600 Wincheste Road Libertyville, IL 60048
06090	RAYCHEM CORPORATION	300 Constitution Drive Menlo Park, CA 94025

CODE	MANUFACTURER	ADDRESS
06383	PANDUIT CORPORATION	17301 Ridgeland Tinley Park, IL 60477
06540	MITE CORPORATION	Amatom Electronic Hardware Division 446 Blake Street New Haven, CT 06515
07263	FAIRCHILD CAMERA \& INSTRUMENT	CORPORATION Sub of Schlumberger LTD North American Sales Mail Stop 14-1053 401 Ellis Street P. O. Drawer 7284 Mt. View, CA 94042
09353	C AND K COMPONENTS, INC.	15 Riverdale Avenue Newton, MA 02158 PHONE: 617-964-6400
11237	CTS KEENE, INC.	$\begin{aligned} & \text { P.0. Box } 1977 \\ & \text { Paso Robles, CA } 93446 \end{aligned}$
12136	PHC`INDUSTRIES, INC.	1643 Haddon Avenue Camden, NJ 08103
13103	THERMALLOY COMPANY, INC.	2021 West Valley View Lane P. O. Box 340839 Dallas, TX 75234
13556	TRW CINCH CONNECTORS	Nuline Facility Division of TRW, Inc. New Hope, MN
14099	SEMTECH CORPORATION	652 Mitchell Road Newbury Park, CA 91320 PHONE: 213-628-5392
14655	CORNELL-DUBILIER ELECTRONICS	Div. of Federal Pacific Electric Co. Government Contracts Department 150 Avenue L Newark, NJ 07101
15542	MINI-CIRCUITS LABORATORY	Div. of Scientific Components Corp. 2625 East 14th Street Brooklyn, NY 11235
16428	BELDEN ELECTRONIC WIRE \& CABLE	Sub of Cooper Industries, Inc. 2200 U.S. Highway 27 South P.0. Box 1980 Richmond, IN 47374 PHONE: 317-983-5200
CODE	MANUFACTURER	ADDRESS
:---:	:---:	:---:
18612	VISHAY INTERTECHNOLOGY, INC.	Vishay Resistor Products Division 63 Lincoln Highway Malvern, PA 19355
19209	GENERAL ELECTRIC COMPANY	Battery Business Department 441 Highway N P. 0. Box 861 Gainesville, FL 32602 PHONE: 904-462-3911
23936	PAMOTOR DIVISION OF WILLIAM	PURDY COMPANY 770 Airport Boulevard Burlingame, CA 94010
26805	OMNI SPECTRA, INC.	Microwave Connector Division Waltham, MA
26806	AMERICAN ZETTLER, INC.	16881 Hale Avenue Irvine, CA 92714
27014	NATIONAL SEMICONIUCTOR CORPOR	ION 2900 Semiconductor Drive Santa Clara, CA 95051
27264	MOLEX, INC.	2222 Wellington Court Lisle, IL 60532
32997	BOIJRNS, INC.	Trimpot Division 1200 Columbia Avenue Riverside, CA
33472	ARGOSYSTEMS, Inc.	884 Hermosa Court Sunnyvale, CA 94086
34649	INTEL CORPORATION	3585 SW 198th Avenue Aloha, OR 97005
50088	MOSTEK CORPORATION	Sub of United Technologies Corp. 1215 West Crosby Road P.O. Box 169 Carrollton, TX 75006
50434	HEWLETT-PACKARD COMPANY	Optoelectronics Division 640 Page Mill Road Palo Alto, CA 94304
51642	CENTRE ENGINEERING, INC.	2820 E. College Avenue State College, PA 16801
53387	minnesota mining and manufacturing company Electronic Products Division 3M Center St. Paul, MN 55101	
:---:	:---:	
54893	HEWLETT-PACKARD COMPANY Microwave Semiconductor Division 350 West Trimble Road San Jose, CA 95131	
55154	```PLESSEY PERIPHERAL SYSTEMS, INC. 17466 Daimler Avenue P. O. Box 19616 Irvine, CA 92714```	
55566	R A F ELECTRONIC HARDWARE, INC. 95 Silvermine Road Seymour, CT 06483 PHONE: 203-888-2133	
56289	$\begin{array}{ll}\text { SPRAGUE ELECTRIC COMPANY } & 87 \text { Marshall Street } \\ & \text { North Adams, MA } 01247\end{array}$	
58910	ABBOTT TRANSISTOR LABORATORIES, INC. Transformer Division 639 South Glenwood Place Burbank, CA 91506	
59660	TUSONIX, INC. 2155 North Forbes Boulevard Suite 107 Tucson, AZ 85745	
59705	STANDEX INTERNATIONAL CORPORATION United Service Equipment Co. Div. 1152 Park Avenue Murfreesboro, TN 37130	
71279	MIDLAND-ROSS CORPORATION Cambion Division One Alewife Place Cambridge, MA 02140 PHONE: 617-491-5400	
71450	CTS CORPORATION 905 North West Boulevard Elkhart, IN 46514	
71984	DOW CORNING CORPORATIONMidland, MI 48640	
73138	```BECKMAN INSTRUMENTS, INC. Helipot Division Sub of Smith Kline/Beckman Corp. 2500 Harbor Boulevard Fullerton, CA 92634```	
CODE	MANUFACTURER	ADDRESS
:---:	:---:	:---:
75915	TRACOR LITtLEFUSE, INC.	800 East Northwest Highway Des Plaines, IL 60016
77969	RUBBERCRAFT CORPORATION OF CALIF	ORNIA LTD. 1800 West 220th Street P.0. Box B Torrance, CA 90507 PHONE: 213-328-5402
78277	SIGMA INSTRUMENTS, INC.	170 Pearl Street South Braintree, MA 02184 PHONE: 617-853-5000
80009	TEKTRUNIX, INC.	4900 Southwest Griffith Drive P. O. Box 500 Beaverton, OR 97077
81349	MILITARY SPECIFICATIONS	Promultgated by Military Departments/Agencies Under Authority of Defense Standardization Manual 4120 3-M
83330	SMITH HERMAN H. INC.	A North Anerican Philips Company 1913 Atlantic Avenue Manasquan, NJ 08736
88245	WINCHESTER ELECTRONICS	Litton Systems-Useco Division 1536 Saticoy Street Van Nuys, CA 91409
90201	MALLORY CAPACITOR COMPANY	Sub of Emhart Industries, Inc. 4760 Kentucky Avenue P. 0. Box 372 Indianapolis, IN 46206
91506	AUGAT, INC.	33 Perry Avenue P. O. Box 779 Attleboro, MA 02703
91637	DALE ELECTRONICS, INC.	2064 12th Avenue P.0. Box 609 Columbus, NE 68601 PHONE: 402-563-6301
91836	KINGS ELECTRONICS COMPANY, INC	40 Marbledale Road Tuckahoe, NY 10707 PHONE: 914-793-5000
92194	ALPHA WIRE CORPORATION	71 Lidgerwood Avenue Elizabeth, NJ 07207 PHONE: 201-925-8000

AS210-02
FREQUENCY
COMPARATOR MODULE

> All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording and/or otherwise without the prior written permission of ARGOSystems, Inc. This manual may not be lent, resold, hired out or otherwise disposed of by way of trade in any form of binding or cover other than that in which it is published, without the prior consent of ARGOSystems, Inc.
Chapter Title Page
Preface iv
1 GENERAL INFORMATION 1-1
1-1 INTRODUCTION 1-1
1-2 PHYSICAL AND ELECTRICAL DESCRIPTION 1-1
2 INSTALLATION 2-1
2-1 INTRODUCTION 2-1
3 OPERATION 3-1
3-1 INTRODUCTION 3-1
3-2 CONTROLS, INDICATORS, AND CONNECTORS 3-1
3-3 OPERATING PROCEDURES 3-1
4 THEORY OF OPERATION 4-1
4-1 INTRODUCTION 4-1
5 MAINTENANCE AND OPERATION 5-1
5-1 INTRODUCTION 5-1
SECTION I
5-2 PREVENTIVE MAINTENANCE5-2
SECTION II
5-3 PERFORMANCE TESTING 5-3
5-4 INPUT FREQUENCY PERFORMANCE TESTS 5-3
5-5 TEST PROCEDURE 5-3
SECTION III
5-6 CALIBRATION/ALIGNMENT PROCEDURE 5-6
5-7 ACCESS TO AS210-02 FREQUENCY COMPARATOR MODULE 5-6
5-8 200 MHz PLO ALIGNMENT PROCEDURE 5-8
SECTION IV
5-9 TROUBLESHOOTING PROCEDURES 5-10
6 ILLUSTRATED PARTS LIST 6-1
6-1 INTRODUCTION $6-1^{\prime}$

LIST OF ILLUSTRATIONS .

Figure Title Page
1.1 AS210-02 Frequency Comparator 1-2
3.1 AS210-02 Front Panel Controls, Indicators, and Connectors 3-2
3.2 Operational Flow Diagram 3-6
4.1 Frequency Comparator Functional Block Diagram 4-2
5.1 AS210-02 Frequency Comparator Input Frequency Performance Test Configuration 5-5
5.2 Flow Diagram of Calibration/Alignment Procedure for AS210-02 Frequency Comparator 5-7
5.3 AS210-02 Frequency Comparator Microprocessor Interface and Input Select Schematic Diagram, A1 5-13
5.4 AS210-02 Frequency Comparator Input Multiplexer Schematic Diagram, AlAl 5-14
5.5 AS210-02 Frequency Comparator 200 MHz Phase-Locked Oscillator and Time Base Select Schematic Diagram 5-15
6.1 - Frequeney Comparator Module 6-4
6.2 AS210-02 Frequency Comparator Microprocessor Interface and Input Select Assembly, A1 6-8
6.3 AS210-02 Frequency Comparator 200 MHz Phase-Locked Oscillator and Time Base Select Assembly, A2 6-13
6.4 AS210-02 Frequency Comparator Input Multiplexer Assembly, A1A1 6-15

LIST OF TABLES

Table Title Page
1-1 AS210-02 Equipment Specification 1-3
3-1 AS210-02 Front Panel Controls, Indicators, and Connectors 3-3
5-1 Preventive Maintenance Checks and Services 5-2
5-2 Required Test Equipment for the Input Frequency Performance Test 5-3
5-3 Required Test Equipment for the 200 MHz PLO Alignment Procedure 5-8
5-4 Error Code Listing 5-11
5-5 Visual Indicators 5-12

PREFACE

This manual contains operation and maintenance instructions for the AS210-02 Frequency Comparator. The data contained herein is arranged as follows:

Chapter 1 General Information
Chapter 2 Installation
Chapter 3 Operation
Chapter 4 Theory of Operation
Chapter 5 Maintenance and Calibration
Chapter 6 Illustrated Parts List

Reference Publications

AS210 Mainframe Instruction Manual
AS210-01 Module Controller Instruction Manual
AS210-03 Frequency Generator Instruction Manual
AS210-04 Digital Delay Generator Instruction Manual
AS210-05 . Standby Battery Instruction Manual

CHAPTER 1

GENERAL INFORMATION

The AS210-02 Frequency Comparator illustrated in Figure 1.1 is a modular plug-in of the AS210 Electronic Counter and Frequency Standard Calibration system. The unit plugs into the AS210 Mainframe which provides power and control. Up to six different time bases can be connected to the AS210-02 front panel for measurement of frequency accuracy. The internal circuitry of the AS210-02 automatically adapts to any of the allowable standard input frequencies to be measured. Samples are taken at a maximum rate or once per hour and up to 500 samples can be stored for computation of warm-up characteristics, drift rate, and aging. This module can be programmed through the IEEE-488 interface in the AS210-01 Module Controller.

1-2 . PHYSICAL AND ELECTRICAL DESCRIPTION

The AS210-02 Frequency Comparator is a single width plug-in unit. Front panel controls select frequency resolution and sampling rate. Six BNC input connectors on the front panel permit connection of the time bases or frequency standards to be measured. The circuitry of the module is mounted on two printed circuit card assemblies. Basically, the Frequency Comparator converts the input to be measured to a 100 KHz test signal, then compares it to the 10 MHz Rubidium Frequency Standard in the AS210 Mainframe. The difference between the standard and measured signal is accumulated in registers and reviewed periodically by the microprocessor in the Module Controller which then performs calculations of drift rate. Table 1-1 is an equipment specification for the AS210-02 Frequency Comparator as installed in the AS210 Mainframe with the AS210-01 Module Controller. The Module Controller and Mainframe are covered in separate publications listed in the preface.

Figure 1.1 AS210-02 Frequency Comparator

Table 1-1
AS210-02 EQUIPMENT SPECIFICATION

CHAPTER 2
INSTALLATION

2-1 INTRODUCTION

The AS210-02 Frequency Comparator plugs into the AS210 Mainframe. The module is electrically connected through the rear connector and mechanically retained via a front panel locking bar on the Mainframe. A release mechanism is located in the lower left hand corner of the front panel. Power and signal interface is provided through the Mainframe. The signals to be measured are connected to the BNC connectors located on the front panel.

NOTE 1: The Frequency Comparator Module is held in the card edge connector with high retention force. In order to remove the module, it may be necessary to pull on the front panel RANGE switch while the release mechanism is pulled.

NOTE 2: Ensure that power is turned OFF in the AS210 Mainframe before installing or removing the AS210-02.

CAUTION

Do not attempt to use the AS210 series modules in a Tektronix Mainframe as severe damage will result.

CHAPTER 3
OPERATION

INTRODUCTION

This chapter describes the operation of the AS210-02 Frequency Comparator. This module works in conjunction with the AS210-01 Module Controller when they are installed in an AS210 system. Figure 3.1 and Table 3-1 illustrate and describe the operator controls, indicators, and connectors of the Frequency Comparator. The operating instructions are essentially identical to those provided in the manual for the Module Controller since most of the operator controls are located on that unit.

3-2 CONTROLS, INDICATORS, AND CONNECTORS

Figure 3.1 illustrates the front panel of the AS210-02, and is indexed to Table 3-1.

3-3 OPERATING PROCEDURES

The following paragraphs and Figure 3.2 are the operating instructions for the Frequency Comparator. Figures in () refer to Figure 3.2 Operational Flow Diagram. Specifically, these instructions tell the operator how to perform frequency error measurements, display measurements from memory, and perform drift calculations. Only the lighted pushbuttons can be used during a routine. CLR is for display clearing only.

Figure 3.1 AS210-02 Front Panel Controls, Indicators, and Connectors

Table 3-1
AS210-02 FRONT PANEL CONTROLS, INDICATORS, AND CONNECTORS

FREQUENCY ERROR MEASUREMENT

A. Connect the frequency source to be measured to the front panel BNC connectors on the AS210-02 Frequency Comparator module.
B. Set the RATE switch on the AS210-02 Frequency Comparator module to MAX for continuous sampling or 1 PER HOUR for sample once per hour. The sampling rate is also a function of the resolution selected as follows:

Resolution
10^{-8}
10^{-9}
10^{-10} 10^{-11}

Samples per hour in
MAX Mode

Approximately 3600
Approximately 600
Approximately 70
7

The memory of the Module Controller can store 500 samples, therefore the 1 PER HOUR mode may be more useful than the MAX mode when data for several days elapsed time is desired. Up to six inputs can be connected to the Frequency Comparator. For the purposes of this procedure, it is assumed that only channel 1 is being used. When more than one signal is connected, the sequence operates so that each channel is observed for one gate period (a function of the resolution selected), then the next channel is observed. It can be seen that as more inputs are connected, less samples per hour are taken per input when in the MAX mode.
C. Press lighted CONT pushbutton (A) and CH 1-6 should be displayed (B).
D. Enter a channe1 number from 1 to 6 with the keyboard and press the ENTER function button (C). The number of channels should be

Figure 3.2 Operational Flow Diagram
displayed on the LED display. If only one channel is used, channel 1 is automatically selected by the program, by pressing the CONT button.
E. Press CONT (D) and SEL 10^{-}should be displayed (E). Select the desired frequency resolution with the RANGE switch on the AS210-02 Frequency Comparator module.
F. Press CONT (F). The frequency offset measurement routine now proceeds. 0000P-00 will be displayed until the first measurement is made. Thereafter, the channel number and frequency offset (error) will be displayed for each measurement as it is made until 500 measurements have been taken. A display of $1398 \mathrm{P}-09$ as shown in Figure 3.2 (G) indicates a frequency offset of 398×10^{-9} on channel 1. When 500 measurements have been completed without interruption, the program will halt automatically and 500 ofF will be displayed, indicating that 500 data points have been taken and the program is in an OFF condition. The measurement cycle can also be stopped at any time with the HALT (H) function button. The data point number and oFF will be displayed (I). Measurement can be resumed by pressing CONT.

DISPLAY FREQUENCY MEASUREMENTS FROM MEMORY

A. Press HALT (H) (if program is running) and then DSPL (J). SEL CH should be displayed (K).
B. Select a channel number with the keyboard and press the ENTER function button (L). SEL dP should now be displayed (M).
C. Select a data point number with the keyboard and press the ENTER function button. The number of data points taken during the measurement cycle can be found by pressing DSPL (N). The number of data points and oFF should be displayed (0). For example, 365 oFF. The display will now'return to SEL dP (M).
D. Press CONT (P) and the display will read out in sequence the data point number and channel number (Q) (e.g., $P 1 \mathrm{CH} 3$), then the time the data point measurement was taken (R) (e.g., 134-22-56), then the frequency offset (error) at that data point (S) (e.g., 4 139P-09).
E. The measurement process can be resumed by pressing HALT. If frequency comparisons have not been in progress, the routine will return to (B) and a channel number can be selected.

DRIFT CALCULATIONS

A. At any time after two or more data points have been collected over a time interval of more than 1 minute, a frequency drift calculation can be made.
B. Press HALT, then select the CALC function button (T). Press HOUR, DAY, or YEAR function button (U) to select period for drift calculation.
C.

SEL CH will be displayed (V). Select the desired channel number with the keyboard and press the ENTER function button (W). (If CONT is pressed (X), all channels will be computed for frequency drift.)
D.

DP 1 will be displayed (Y). Select the desired number for data point one with the keyboard and press the ENTER function button (Z). The number entered can be anything within the data field from 1 to 500 , depending on the resolution selected, length of measurement, number of data points, time, etc. If CONT is pressed (a) the drift calculation will automatically be made on the first and last data points. If CONT is not pressed, then dP 2 will be displayed (b). Enter the desired second data point number as with $d P 1$ (Z).
E. The drift rate will now be displayed for the selected channel (d). For example, 1 3786P-12 indicates a frequency drift over the period of time selected in step 2 of 3786 parts out of 10^{12}.
F. Pressing CONT (e) at this time will return the routine to the point (U) where new time frames, channels, and data points can be selected for a drift calculation.
G. Pressing HALT returns the routine to displaying the frequency offset calculations in process at point (G). If frequency comparisons are not in progress, the routine returns to display $\mathrm{CH} 1-6$ at point (B).

4-1 INTRODUCTION

This chapter describes the theory of operation for the AS210-02 Frequency Comparator. The description is keyed to Figure 4.1, Functional Block Diagram and the schematics in Chapter 5. The three circuit boards are designated A1, A1A1, and A2. Details of common types of circuits (power supplies, etc.) have been omitted. Reference is made in the description to data that comes from and is returned to the CPU. The CPU is located in the AS210-01 Module Controller that is used in conjunction with the Frequency Comparator. Details regarding the operation of the Module Controller may be obtained from the Module Controller manual.

The Frequency Comparator circuit obtains the signal to be measured and compares it with the 10 MHz Rubidium frequency standard. Resolution of Parts in 10^{-11} is achieved through the use of a 200 MHz phase-locked oscillator (PLO) in the counting circuit. The frequency comparator circuits consist of the 10 MHz standard division circuit, input signal conversion circuit, clock circuit, and data processing circuit. The standard input signal can be $0.1,1,5$, or 10 MHz . Up to six inputs may be accommodated by the AS210-02. The input signal is frequency divided to 100 KHz and used to phase lock the 200 MHz PLO. The PLO signal is gated by the clock enable signal derived from the 10 MHz reference standard. Pulses from the 200 MHz PLO are counted in the accumulator circuit that is periodically scanned by the CPU. Resolution changes are made by varying the clock enable period.

Six input channels are applied to the Input Multiplexer Assembly A1A1. The input select data is obtained from latch AlU10 which holds

Figure 4.1 Frequency Comparator Functional Block Diagram
information from the Module Controller's CPU selecting the channel to be analyzed. The CPU data is applied to the A1U10 via bidirectional MUX A1U13 and AlU14. This channel number is initially selected by the operator at the Module Controller. The input channels may also be sequentially scanned by the CPU. The Module Controller manual contains more details regarding the CPU operation. The selected input signal is next applied to frequency divider AlU6. The input signal may be $0.1,1,5$, or 10 MHz . The frequency divider A1U6 contains $\div 1, \div 10, \div 50$, and $\div 100$ outputs. A 100 KHz output from Alu6 is desired regardless of the frequency of the input signal. This is achieved by a 100 KHz search circuit consisting of multiplexer A1U4, pulse shaper AlU5, a low pass filter, comparator A1U1, oscillator AlU2, and counter AlU3. The output of AlU4 is pulse shaped by one-shot A1U5 and applied to a low pass filter. The filter's output is a dc voltage that is proportional to frequency. This voltage is applied to the variable input of comparator AlU1. The reference input of AlUl is set to a voltage that causes the comparator to go high when the variable dc input is equivalent to a 100 KHz signal. When the comparator is low, a ground is provided to an LED that lights to indicate OFF FREQ. The low is also sent to the CPU. While the comparator's output is low (not 100 KHz), a 30 Hz oscillator AlU2, is enabled. The oscillator increments counter AlU3 which sequentially selects inputs to the multiplexer A1U4. The select line sequentially outputs the multiplexer's $\div 1, \div 10, \div 50$, and $\div 100$ input until the 100 KHz signal is found. When the line containing the 100 KHz signal is located, the search loop stops as comparator AlU1 goes high, inhibiting AlU2. Assuming an input signal of 1 MHz , the $\div 10 \mathrm{multiplex}$ input line will contain the 100 KHz . If the input were 5 MHz , the $\div 50 \mathrm{multi}$ plex input line would contain the 100 KHz signal, etc. The 200 MHz VCO , A2Q6, A2Q7 is phase locked to the 100 KHz signal by phase detector A2U18. A2U20, A2U25, and A2U26 divide the 200 MHz signal to 100 KHz . The output of A2U18, filtered and amplified by A2U21, tunes the VCO. Any changes that occur in the input signal are therefore reflected in the output of the 200 MHz VCO. The 200 MHz output is applied to an accumulator circuit consisting of 6 dual decade counters A2U5, A2U6, A2U8, A2U9, A2U11, and A2U24. If the 200 MHz oscillator is gated into the accumulator for 0.5 seconds, 100×10^{6} or 10^{8} pulses would be counted. This corresponds to a frequency resolution
of 1×10^{-8} or 1 pulse out of 10^{8} pulses. Similarly, if the oscillator were gated for periods of 5,50 , or 500 seconds, frequency resolutions of 10^{-9}, 10^{-10}, and 10^{-11} are obtained. In order to provide a precise clock gating period, the 10 MHz Rubidium reference standard signal is divided by 500 in frequency divider Alu7, Alu9, and Alull. The 20 Hz signal is appied to divider A2U22-A2U23 that has four outputs: $\div 10, \div 100, \div 1000$, and $\div 10000$ corresponding to sampling periods of 0.5 seconds, 5 seconds, 50 seconds, and 500 seconds. The four signals are applied to time base multiplexer A2U19. Select lines are obtained from the CPU depending on the resolution selected by the operator at the Module Controller. If, for example, the resolution selected was 10^{-9}, the 5 second period line would be output by the multiplexer. Flip-flop A2U17 goes high on the leading edge of the pulse train and thus provides a 5 -second gating pulse for clock gate A2U27. This permits 10^{9} pulses to be counted in the accumulator (provided that the input frequency were exact). The accumulator's output is read by the CPU via a decoding multiplexer (A2U1-A2U4, A2U7, A2U10, A2U13, A2U14). The other inputs to the multiplexers are the front panel RANGE switch and RATE switch. The CPU scans the switches ten times per second to determine the correct data to be applied to the various multiplexers previously described. When a_read_signal ($\overline{R E}$) is received from the CPU, the accumulator is read and cleared. The $\overline{R E}$ signal also turns off the front panel GATE LED through driver A2Q1. The accumulator's contents are transmitted through the data bus to the Module Controller where calculations are performed. These calculations allow the operator to determine frequency drift over variable periods of time with varying degrees of resolution. This process is explained more fully in the section on operation and in the Module Controller Manual.

CHAPTER 5
 MAINTENANCE AND OPERATION

5-1 INTRODUCTION

The purpose of this chapter is to provide maintenance and calibration data for the AS210-02 Frequency Comparator. Section I covers routine preventive maintenance procedures. Section II outlines performance tests for the Frequency Comparator. Section III contains the calibration/ alignment procedures for the AS210-02 module, and Section IV describes troubleshooting data. Please contact the factory for any assistance required in the maintenance or servicing of the AS210-02.

SECTION I

5-2
 PREVENTIVE MAINTENANCE

Table 5-1 lists preventive maintenance checks and services which should be performed regularly.

Table 5-1
PREVENTIVE MAINTENANCE CHECKS AND SERVICES

ITEM	PROCEDURES
CABLES	Visually inspect cables for strained, cut, frayed, or other damaged insulation.
Make sure the exterior surfaces of the unit are clean. If	

SECTION II

5-3 PERFORMANCE TESTING

This section describes the procedure to test the AS210-02 Frequency Comparator to assure proper performance of the instrument. The AS210-02 must be used in conjunction with the AS210-01 Module Controller since the CPU in the AS210-01 monitors the controls and operates on the data collected by the AS210-02. The AS210-02 Frequency Comparator will not operate without the AS210-01 Module Controller installed. If the AS210-02 fails any of the performance tests, please see Section III, Calibration/Alignment procedures and/or Section IV, Troubleshooting procedures in this chapter.

5-4 INPUT FREQUENCY PERFORMANCE TESTS

The following is a procedure for testing the input frequency performance of the AS210-02 frequency comparator. Table 5-2 contains the required test equipment for this procedure.

Table 5-2
REQUIRED TEST EQUIPMENT FOR THE INPUT FREQUENCY PERFORMANCE TEST

ITEM	RECOMMENDED TEST EQUIPMENT
Frequency Synthesizer	Hewlett-Packard 8656A
Coaxial Cable (2 required)	3 foot long, 50 ohm, BNC
RF Voltmeter	Boonton 92BD OPT 01, 09 with
	50 ohm BNC adapter

5-5
TEST PROCEDURE
A. Ensure that power is disconnected from the AS210 system before beginning this procedure.
B. Tune the frequency synthesizer for a 100 KHz signal. Monitor the output of the signal synthesizer with the RF voltmeter and adjust the signal for an output level greater than or equal to 0.5 volts RMS.
C. Connect the equipment as indicated in Figure 5.1 and apply power to the AS210. The Rubidium Frequency Standard in the AS210 system will require 20 minutes warm-up time to reach the specified frequency accuracy.
D. Set the AS210-02 Frequency Comparator RANGE switch to 10^{-8} and set the RATE switch to MAX.
E. Press RESET on the AS210-01 Module Controller. The display of the AS210-01 should indicate "SEL?"
F. Press CONT. The AS210-01 display should indicate "CH 1-6."
G. Press 1, press ENTER. The display should read "SEL 10."
H. Press CONT. The GATE LED on the AS210-02 Frequency-Gomparator should light for 0.5 second at a time. Monitor the display for 30 seconds. The display should read "1....OP-08" plus or minus 1 part in 10^{-8} during this time.
I. Repeat steps B through H for the frequency synthesizer tuned to $1 \mathrm{MHz}, 5 \mathrm{MHz}$, and 10 MHz .
J. If further verification of proper performance of the AS210-02 Frequency Comparator is desired, this procedure may be repeated for each of the other three RANGE positions $\left(10^{-9}\right.$, $10^{-10}, 10^{-11}$). Please note that the GATE LED will light for 5 seconds for the 10^{-9} setting, 50 seconds for the 10^{-10} setting, and 500 seconds for the 10^{-11} setting. This procedure may al so be run with the RATE switch set on 1-PER-HOUR.
K. Disconnect the frequency synthesizer from the AS210-03.

5-6 CALIBRATION/ALIGNMENT PROCEDURE

WARNING

The following Calibration/Alignment Procedures (Chapter 5, Section III), and Troubleshooting Procedures (Chapter 5, Section IV) are for use by qualified personnel only. To avoid personal injury, do not perform any servicing other than that of Routine Maintenance (Chapter 5, Section I, and Performance Testing (Chapter 5, Section II) unless you are qualified to do so.

Figure 5.2 is a flow diagram of the Calibration/Alignment Procedure for the-AS210-02 Frequency Comparator. Use-this flow diagram-with the theory of operation in Chapter 4, the text in this chapter, and the illustrated parts lists in Chapter 6. The Rubidium frequency standard calibration procedure which is contained in the AS210 mainframe operation and maintenance manual is also referenced in this flow diagram. Please note it is not necessary to disassemble the AS210.system to determine if the calibration/alignment is needed. For any assistance needed in performing this calibration/alignment procedure, please contact the factory.

5-7 ACCESS TO AS210-02 FREQUENCY COMPARATOR MODULE

Please reference the AS210 mainframe manual for the disassembly procedure of the AS210 system to allow access to the AS210-02 Frequency Comparator module. Access to the module circuitry itself is gained by removing the two metal side covers with a small straight-blade screwdriver. Place the module on one of its sides so that one cover is facing up. Starting with the

Figure 5.2 Flow Diagram of Calibration/Alignment Procedure for AS210-02 Frequency Comparator
end toward the edge connector, insert the screwdriver into one of the slots where the cover mates with the module chassis and pry the cover up. It will be necessary to move along the slot toward the front panel of the module and repeat the prying action to loosen the side of the cover from the module. Repeat this technique to free the other side of the cover from the chassis. Set the free cover clear of the module and flip the module over so that the second cover is now facing up. Repeat the above procedure to free this cover. The circuit card assemblies are removed from the module by removing four screws.

5-8 200 MHz PLO ALIGNMENT PROCEDURE

The following is the alignment procedure for the 200 MHz phaselocked oscillator (PLO) in the AS210-02 Frequency Comparator. This is the only alignment operation necessary for the AS210-02. Table 5-3 contains the required test equipment for this alignment procedure.

Table 5-3
REQUIRED TEST EQUIPMENT FOR THE 200 MHz PLO ALIGNMENT PROCEDURE

ITEM	RECOMMENDED TEST EQUIPMENT
Oscilloscope with Probes	Tektronix 465 or equivalent
Frequency Synthesizer	Hewlett Packard 8656A
Coaxial Cable (2 required)	3 foot long, 50 ohm, BNC RF Voltmeter
	BNO adan 92BD OPT01, 09 with 50 ohm

A. Ensure that power is disconnected from the AS210 system before beginning this procedure.
B. Obtain access to the AS210-02 module circuits by referencing paragraph 5-7 in this chapter.
C. Tune the frequency synthesizer for a 1 MHz signal. Monitor the output of the signal synthesizer with the RF voltmeter and adjust the signal for an output level greater than or equal to 0.5 volts RMS.
D. Connect the equipment as indicated in Figure 5.1 and apply power to the AS210. The Rubidium Frequency Standard in the AS210 system will require 20 minutes warm-up time to reach the specified frequency accuracy.
E. With an Oscilloscope, monitor the DC level at the test point TV* on pin (6) six of A2U21 located on Assembly A2..
F. In a CW direction, adjust A2C8 located on Assembly A2*, until the voltage level passes through a minimum DC level. Continue until the level equals a -4 VDC level.

The AS210-02 Frequency Comparator should now be aligned. To confirm that the Frequency Comparator is operating properly, reference Section II, Performance Testing of the AS210-02, contained in this chapter.

[^1]
SECTION IV

5-9 TROUBLESHOOTING PROCEDURES

Troubleshooting of the Frequency Comparator is facilitated by a combination of error codes displayed on the Module Controller and LED indicators on the two circuit card assemblies. The circuit cards are illustrated in Figures 6.2 (A1) 6.3 (A2), and 6.4 (A1A1). Table 5-4 correlates the error codes, displayed on the Module Controller when a fault occurs, to the malfunction. An explanation of the problem is provided with possible solutions. Table 5-5 is a list of visual indicators on circuit cards A1 and A2 and the meaning of their indications. Figures $5.3,5.4$, and 5.5 are schematic diagrams of assemblies A1, A1A1, and A2, respectively.

Table 5-4 ERROR CODE LISTING

ERROR CODE	PROBLEM	RECOMMENDED SOLUTION
2-01	Output decade registers cannot be cleared	Check A2U5, U6, U9, U11, U15, A1U10, U13, U14, AlA1U1, U2, U3.
2-02	Input selector circuit not working properly (See Table 5-5, AlCR1)	
2-03	Measurement complete, flip flops will not reset	Check A2U17 or A1U10, U13, U14.
2-04	No measurement timebase	Check 10 MHz standard, AlQ1, U11, U9, U7, or A2U15, U23, U22, U19, or U17.
2-05	Self test measurement not within ± 1 part in 10^{8}.	Check 200 MHz phase lock loop or counters A2U5, U6, U9, U11, A1A1U1, U2, U3. See paragraph 5-18.
$\begin{gathered} 2-11 \\ \text { to } \\ 2-16 \end{gathered}$	No signal present at indicated (1-6) input or signal output is not one of the allowable standard frequencies	Check input signal and input signal frequency on the indicated input.
2-20	Data points selected for drift rate calculation are separated by less than 1 minute.	Choose new data points accuracy of drift rate calculation improved by increasing time between measurements.
2-21	Data points separated by discontinuous time (power failure without battery backup of frequency standard).	
2-22	Initial data point in drift rate calculation overflowed.	
2-23	Final data point overflowed.	
2-30	Channel number specified has no data associated with it.	.
2-40	Data point specified is empty.	
2-50	Remote continue comand with module in standby mode.	

Table 5-5
VISUAL INDICATORS

INDICATOR	PROBLEM	RECOMMENDED SOLUTION
A1CR1	Off frequency. Input selector malfunction.	Check A1A1, U6, U5, U1, U4, U2, or U3.
A2CR1 ON	Unlock. 200 MHz oscillator malfunction.	Check A2Q6, Q7, or A2U18, U20, U25, Q8, U26, U27, U21. See paragraph 5-8.

NOTES: Unless otherwise specified

1. Interpret drawing in accordance with standard prescribed by MIL-STD-100.
2. All resistance values are in ohms, $1 / 4 \mathrm{~W}, \pm 5$ percent.
3. All capacitance values are in
$\mu \mathrm{F}$.
4. \longleftarrow denotes signal ground.

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

CHAPTER 6

ILLUSTRATED PARTS LIST

6-1 INTRODUCTION

This chapter contains an illustrated parts list for the AS210-02 Frequency Comparator Module. The assembly numbers and assembly title are listed at the top of the parts lists. The parts lists are divided into five columns and arranged in the following order:

Column 1 - Item Number

Column 2 - Quantity Quantity per assembly.

Column 3 - Manufacturer's Part Number Please disregard the first two digits before the dash when referencing these part number.

Column 4 - Description
A brief description of the item.

Column 5 - Reference Designation and Remarks
The electrical or electronic designation of the item as shown on the schematic diagram, wiring diagram or interconnect diagram, and the Federal Supply Code for manufacturers.

[^2]

Figure 6.1 Frequency Comparator Module

ASSEMELY NUMBER 01-117220-01			FREQUENCY COMPARATOR AI	
ITEM	QTY	PART NUMEER	DESCRIfTION	REF, DESIG. ANO REMARKS
4	- 1.	15-117223-01	Pub	
				ARGOSYSTEMS, 33472
5	$0:$	**-117221	SCHEMATIC	
	1	-		ARCOSYSTEMS, 33472
6	0 .	**-117220	ASSEMBLY DRAWING	\qquad
				ARGOSYSTEMS, 33472
27	1.	30-CK05BX102K	. DOIUFD 10\% CERAMIC CAPACITOR	$C 7 \ldots$
				81349
28	1.	30-cK058×103K	. OIUFD 10\% CERAMIC CAPACITOR	C13___
				81349
29	13.	30-CK05Bx 104 K	. 1 UFD 10% CERAMIC CAPACITOR	C9, C15, C17-24, C26-28_
				81349
30	4.	$30-300-50-601-105 M$	1UFD 20\% CERAMIC CAPACITOR	C11-12, C14, C16_
				CENTRE ENG. . 51642
35	1.	30-CSR13G106KL.	10UFD, 5OY, ELECTROLYTIC CAP	C1O.
				81349
37	2.	30-196D156K9020KA1	15UFD, 10% SOLID TANTALUM CAP	c29, C25
				SPRAGUE, 56289
47	3.	13-20108-1	TERMINAL	
		-		USECO, 15849
50	1.	60-5082-4487	Light emitting diode	CRI__
				H.P., 50434
54	1.	55-114473	5.2Y 2ENER OIODE	CR2
				MOTTOROLA, 04713
56	6.	55-1N3 064	DIODE	CR3-CR8______
				NATIOMAL, 27014
59	1.	18-3429-1202	26 Pin PC Mount male header	
				3M
61	1%	10-22-03-2121	WAFER, 12 PIN	J3
				MOLEX, 27264
64	1.	25-4K200-20/48	WIDE BANO EHUKE	L1_____
				FERROXCUEE, 02114
66	1.	50-2N2222A	NPN TRANSISTOR	Q1____
				HATIOHAL, 27014
73	9.	35-RCR 076102 JS	1K 5\% 1/4W CARBON COMP	```R6, R18, R21, R22-24, R26-28``` \qquad ```\[81349 \]```
74	2.	35-RCR076103JS	10K 5\% 1/4W CARBON COMP	R2, R20_
			-	81349

ITEM	ASSEMBLY NUMBER 01-117220-01		FREQUENCY COMPARATOR AI	
	QTY	Part humber	OESCRIPTION	REF. DESIG. ANO REMARKS
75	1.	35-RCR 076123 JS	12K 5\% $1 / 44$ CARBON COMP	R5
				81349
76	1.	35-RCR 076153 JS	15K 5\% 1/4U CARBOH COMP	R10
				81349
77.	1.	35-RCR07G222 JS	2.2K 5\% 1/4W CARBON COMP	R7
		-		81349
79	2.	35-RCR 07G273JS	27K 5\%, 1/4U CARBON COMP	R15,16
				81349
80	4.	35-RCR $07 \mathrm{G471}$ JS	470 5\% 1/4W CAROON COMP	R3, R13, R17, R19
				81349
81	2.	35-RCR07G472 JS	4.7K 5\% 1/44 CARBON COMP	R11, R14
				81349
82	1.	35-RCR076562 JS	5.6K 5\%. 1/4U CARBON COMP	R1
				81349
96	1.	47-LM320MP-12	124 REGULATOR	U18
				HATIUNAL. 27014
97	1.	47-LM342P-12	12 V REGULATOR	U17
	1			MATIOMAL, 27014
98	1.	47-LM3302N	DUAL COMPARATOR	41
				NATIONAL. 27014
101	1.	47-74LSOCH	QUAD 2 InPUT NAMD GATE	416
				T.1..01295
102	2.	47-74LS04H	HEX INYERTER	U12, U15
				T.I.,01295
103	1.	47-74LS112N	DUAL JK FLIP FLOP	43
				T.I. ONLY, 01295
104	2.	47-74LS123N	dUAL ONE SHOT.	U2, U5
				T.I. ONLY, 01295
105	1.	47-74LS153N	MULTIPLEXER	U4
				T.I. ONLY. 01295
106	1.	47-74LS273N	OCTAL D FLIP FLOP	$U 10$
				T.1. 01295
107	4.	47-74LS390N	DECADE COUNTER	U6, U7, U9, U11
				T.I., OHLY, 01295
110	1.	01-125383	AIA1, input analog multiplexer	
				ARGOSYSTEMS, 33472
113	2.	47-P8216	QUS DR[YERJ	U13,14
				INTEL, 34649

ASSEMbly number 01-117220-01			frequency comparator at	
ITEM	aty	part number	description	ref. desig. amd remarks
117	4.	13-C9314-02	14 PIN SOCKET	
				T.1.,01295
119	11.	13-C9316-02	16 PIN SOCKET	
				T.1..01295
121	$1 .$.	13-C9320-02	20 PIN SOCKET	
				T.1..01295

*

ASSEMBLY NUMBER 01-117225-01			FREQUENCY COMPARATOR A2	
ITEM	QTY	PART NUMBER	DESCRIPTION	REF. DESIG. AND REMARKS
4	1.	15-117228-01	PWB	
				ARGOSYSTEMS,33472
5	0 :	**-117226	SCHEMATIC	
				ARGOSYSTEMS,33472
6	0.	**-117225	ASSEMBLY DRAWING	-
				ARGOSYSTEMS, 33472
28	11.	30-CK05BX104K	. 1 UFD 10\% CERAMIC CAPACITOR	$\begin{aligned} & \text { C2, C14-20, C22, C23, } \\ & \text { C25 } 81349 \end{aligned}$
29	1.	30-CK058xis2K	. 0015 UFD 10% CERAMIC CAP	C6
				81349
30	3.	30-CK058X471K	470 FFD 10% CERAMIC CAPACITOR	C4, $\mathrm{Cl}, \mathrm{Cli}$
				81349
31	1.	30-CK 05BK472K	. D047UFD 10\% CERAMIC CAPACITOR	C5
				81349
32	4.	30-1960156×9020KA1	15UFD 10\% SOLID TAMTALUM CAP	C12, $\mathrm{C13}, \mathrm{C} 21, \mathrm{C} 24 \ldots \ldots$
		.		SPRAGUE. 56289
35	1.	30-CSR13G106KL	1 OUFD, $50 Y$ ELECTROLYTIC CAP	C3__
				81349
38	1.	30-513-010-A2-10	2-1 OPFD VARIABLE CAPACITOR	
	.			ERIE, $7298{ }^{\circ}$
39	2.	30-100-100coc689	6.8PFD 5\% LERAMIC CAPACITOR	$\mathrm{Cg}, \mathrm{CHO}$
				CENTRE ENG. 51642
47	7.	13-20108-1	TERMINAL	
				USECO, 15849
50	2.	60-5082-4487	LIGHT EMITTING DIODE	CRI, CRS
				H.P.,50434
52	2.	55-nv2203	TUNING DIODE	CR2. CR3
				MOTOROLA, 04713
54	1.	55-1N3064	DIODE	
				MATIONAL, 27014
58	1.	18-3429-1202	26 PIN PC MOUNT CONMECTOR	
				3M
60	1.	18-22-03-2021	2 PIN WAFER	J5
				MüLEX, 27264
61	1.	18-22-03-2041	4 PIN WAFER	J4___
			-	MOLEX, 27264
64	1.	14-6007A	heat sink base a cap	
				THERMALLOY, 13103

	ASSEMB	HUMEER 01-117225-0	FREQUENCY COMPARATOR A2	
ITEM	Qty	PART NUMBER	OESCRIPTION	REF, desig. and remarks
73	1.	25-117305-10	INDUCTOR	Li
				ARGOSYSTEHS, 33472
76	2.	12-MSSI957-4	SCREW, PNH, 2-56 $\times 5 / 16$	
78	2.	12-NAS620-C2	REDUCED OD FLAT HASHER 2	
79	2.	12-Ms35338-134	SPLIT LOCK UASHER 2	
80	2.	12-NAS671-C2	SMALL PATTERN HEX MUT \#2	
83	1.	50-2H2222A	NPN TRANSISTOR	01
				NATIONAL, 27014
85	2.	50-2N5179	NPN TRANSISTOR	Q6, 07
				MOTOROLA, 04713
86	5.	50-MPS3639	PMP TRANSISTOR	Q2-05, 08
				MOTOROLA, 04713
97	1.	35-RCR07G102JS	IK OHM 5\% 1/4W CARBON COMP	R1
				81349
98	2.	35-RCR07G103 JS	10K OHM 5\% 1/4W CARBON COMP	R5. R35
				81349
99	1.	35-RCR05G475 JS	4.7 MEG OHM 5\% 1/BU CARBOH COM	R6
			\cdots	81349
100	5.	35-RCR OTG151JS	150 OHM 5\% 1/4W CARBON COMP	R11, R24, R26, R34, R43_
				81349
101	1.	35-RCR 076223 JS	22K OHM 5\% 1/46 CARBON COMP	R50
				81349
102	3.	35-RCR 07G221 JS	220 OHM 5\% 1/4U CARBON COMP	R15, R17, R19
				81349
103	2.	35-RCR 07G273JS	27K OHM 5\% 1/4W CARBON COMP	R13,R14
				81349
104	6.	35-RCR 076390 JS	39 OHM 5\% 1/4W CARBON COMP	\qquad
105	1.	35-RCR 076331 ds	330 K OHM 5\% 1/44 CARBOH COMP	R4
				61349
106	10.	35-RCR 07G471 JS	470 OHM 5\% 1/4U CARBON COMP	$\begin{aligned} & \text { R8, R10, R16, R23,R27-30 } \\ & \text { R33, R42, } \\ & \text { 81349 } \end{aligned}$
108	3.	35-RCR 076511 JS	510 OHM 5\% 1/4W CARBON COMP	R20,R21, R49
		-		81349
109	1.	35-RCR07G430dS	43 OHM 5\% 1/4W CARBOH COMP	R2
			.	81349

	ASSEMBL	NUMEER 01-117225-01	FREQUENCY COMPARATOR A2	
ITEM	Qty	PART Humber	DESCRIPTION	REF. DESIG. AND REMARKS
110	1.	35-RCR07G131JS	130 OHM 5\% 1/4W CARBON COMP	R22
				81349
111	1.	35-RCR07G473JS	47 K OHM 5\% 1/4W CARBON COMP	R3
				81349
113	$1:$	35-RCR07GIIIJS	110 OHM 5\% 1/4W CARBON COMP	R7
				81349
119	2.	35-RCR07G181 JS	180 OHM 5\% 1/46 CARBON COMP	R31, R32
			-	81349
120	2.	35-RCR076271J3	270 OHM 5\% 1/4W CARBON COMP	R36, R37
				81349
121	4.	35-RCR 07G472dS	4.7K OHM 5\% 1/4W CARBON COMP	R41, R44-46_____
			.	81349
122	2.	35-RCR07G821 JS	820 OHM 5\% 1/44 CARBDN COMP	R39, R39
				91349
142	1.	47-74LS00N	QUAD 2 InPut nand gate	415
				T.1.,01295
143	1.	47-74S04N	HEX INYERTER	416
				T.I..01295
144	1.	47-745112N	dUAL JK FLIP FLIAP	U17
				$\bar{T}-1.01295$
145	8.	47-74LSIS1N	7 TO 1 MULTIPLEXER	$\text { U1-u4, U7, } 410,413,14 \ldots$
		- .		$\text { T. 1., } 01295$
146	1.	47-74LSI53N	MULTIPLEXER	019
				T.1., 01295
147	2.	47-74LS290N	DECADE COUNTER	U12. U25__
				T.1., 01295
148	6.	47-74L5390H	DECADE COUNTERI	45, 46, 48, 49, 411, 420_
				T.1.,01295
149	2.	47-74LS490N	decade counter	U22.U23_
	\cdots			T.I.,01295
152	1.	47-MC10102P	guad 2 input mand gate	U:27
				MOTOROLA, 04713
153	1.	47-MC1678P	DECADE COUNTER	424
				MOTOROLA, 04713
154	1.	47-MC4044P	Phase comparator	
				MOTOROLA,04713
157	1.	47-LM74ICN	comparator	U21_ .
				NATIONAL, 27014

COMPONENT SIDE
Figure 6.3 AS210-02 Frequency Comparator 200 MHz Phase-Locked Oscillator and Time Base Select Assembly, A2

[^3]

Figure 6.4 AS210-02 Frequency Comparator Input Multiplexer Assembly, AlA

ASSEMBLY HUMBER 00-157351-01 CABLE ASSEMBLY				REF. DESIG. ANO REMARKS
I TEM	QTY	PART HUMBER	OESCRIPTION	
1	2.	17-3399-6000	CONNECTOR, 26 PIM	
-				3 m
2	6.	16-3365/26	CABLE, 26 WIRE, RIE8ON	
				3 M

AS210-03
 FREQUENCY
 GENERATOR MODULE

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording and/or otherwise without the prior written permission of ARGOSystems, Inc. This manual may not be lent, resold, hired out or otherwise disposed of by way of trade in any form of binding or cover other than that in which it is published, without the prior consent of ARGOSystems, Inc.
Chapter Title Page
Preface vi
1 GENERAL INFORMATION 1-1
1-1 INTRODUCTION 1-1
1-2 PHYSICAL AND ELECTRICAL DESCRIPTION 1-1
2 INSTALLATION 2-1
2-1 INTRODUCTION 2-1
3 OPERATION 3-1
3-1 INTRODUCTION 3-1
3-2 CONTROLS AND CONNECTORS 3-1
3-3 OPERATING INSTRUCTIONS 3-1
4 THEORY OF OPERATION 4-1
4-1 INTRODUCTION 4-1
4-2 OVERALL DESCRIPTION 4-1
4-3 FREQUENCY GENERATION 4-3
4-4 PHASE LOCK SIGNAL 4-3
4-5 PHASE LOCKING 4-5
4-6 OUTPUT AMPLITUDE LEVELING 4-5
5 MAINTENANCE AND CALIBRATION 5-1
5-1 INTRODUCTION 5-1
SECTION I
5-2 PREVENTIVE MAINTENANCE 5-2
SECTION II
5-3 PERFORMANCE TESTING 5-3
5-4 RF OUTPUT FREQUENCY PERFORMANCE TEST 5-3
5-5 TEST PROCEDURE 5-3
5-6 RF OUTPUT LEVEL PERFORMANCE TEST 5-6
5-7 TEST PROCEDURE 5-6
SECTION III
5-8 CALIBRATION/ALIGNMENT PROCEDURE 5-10
5-9 ACCESS TO AS210-03 FREQUENCY GENERATOR MODULE 5-10
5-10 PLO ALIGNMENT PROCEDURE 5-12
5-11 OUTPUT LEVEL ALIGNMENT PROCEDURE 5-13

TABLE OF CONTENTS (Continued)

Chapter Title PageSECTION IV
5-12 TROUBLESHOOTING PROCEDURES 5-15
6 ILLUSTRATED PARTS LIST 6-1
6-1 INTRODUCTION 6-1

LIST OF ILLUSTRATIONS

Figure	Title	Page
1.1	AS210-03 Frequency Generator Module	1-2
3.1	AS210-03 Controls and Connectors	3-2
4.1	Frequency Generator Functional Block Diagram	4-2
4.2	Voltage Controlled Oscillator (VCO) Block Diagram	4-4
5.1	AS210-03 Frequency Generator RF Output Frequency Test Configuration	5-5
5.2	AS210-03 Frequency Generator RF Output Voltage Level Test Configuration	5-7
5.3	Flow Diagram of Calibration/Alignment Procedure for AS210-03 Frequency Generator	5-11
5.4	AS210-03 Frequency Generator; Microprocessor Interface, A1, Schematic Diagram	5-17
5.5	AS210-03 Frequency Generator; Frequency Generating Circuits, A1, Schematic Diagram	5-18
5.6	AS210-03 Frequency Generator 500 MHz , VCO, A1A1, Schematic Diagram	5-19
5.7	AS210-03 Frequency Generator $400 \mathrm{MHz}, \mathrm{VCO}, \mathrm{A} 1 \mathrm{~A} 2$, Schematic Diagram	5-20
5.8	AS210-03 Frequency Generator 300 MHz , VCO, A1A3, Schematic Diagram	5-21
5.9	AS210-03 Frequency Generator 200 MHz , VCO, A1A4, Schematic Diagram	5-22
5.10	AS210-03 Frequency Generator 100 MHz , VCO, A1A5, Schematic Diagram	5-23
5.11	AS210-03 Frequency Generator $50 \mathrm{MHz}, \mathrm{VCO}, \mathrm{A} A \mathrm{~A} 6$, Schematic Diagram	5-24

Figure	Title	Page
6.1	AS210-03 Frequency Generator	6-5
6.2	AS210-03 Frequency Generator Assembly, A1	6-11
6.3	AS210-03 Frequency Generator VCO Circuit Card Assemblies A1A1 (500 MHz), A1A2 (400 MHz), and A1A3 (300 MHz)	6-19
6.4	AS210-03 Frequency Generator VCO Circuit Card Assemblies AlA4 (200 MHz), A1A5 (100 MHz), and A1A6 (50 MHz)	6-26

LIST OF TABLES

Table Title Page
1-1 AS210-03 Equipment Specification 1-3
3-1 AS210-03 Controls and Connectors 3-3
5-1 Preventive Maintenance Checks and Services 5-2
5-2 Required Test Equipment for RF Output Frequency Performance Test 5-3
5-3 Minimum Performance Limits for RF Output Frequencies of the AS210-03 5-4
5-4 Required Test Equipment for RF Output Leve1 Performance Test 5-6
5-5 Minimum Performance Limits for RF Output Voltage Level of the AS210-03 5-9
5-6 Required Test Equipment for the PLO Alignment Procedure 5-12
5-7 Required Test Equipment for AS210-03 Output Level Alignment Procedure 5-14
5-8 Error Code Listing 5-15
5-9 Visual Indications 5-16

PREFACE

This manual contains operation and maintenance instructions for the AS210-03 Frequency Generator. The data contained herein is arranged as follows:

Chapter 1 General Information
Chapter 2 Installation
Chapter 3 Operation
Chapter 4 Theory of Operation
Chapter 5 Maintenance and Calibration
Chapter 6 Illustrated Parts List

Reference Publications

AS-210 Mainframe Operation and Maintenance Manual
AS-210-01 Module Controller Operation and Maintenance Manual
AS-210-02 Frequency Comparator Operation and Maintenance Manual
AS-210-04 Digital Delay Generator Operation and Maintenance Manual
AS-210-05
Standby Battery Operation and Maintenance Manual

CHAPTER 1

GENERAL INFORMATION

The AS210-03 Frequency Generator illustrated in Figure 1.1 is a modular plug-in used in the ARGOSystems AS210 Electronic Counter and Frequency Standard Calibration system. This module is used for testing the amplitude and frequency specifications of electronic counters. Eight individual frequency outputs at nine selectable output levels are provided by the unit. A leveling loop permits an output accuracy of better than 1 dB over 60 dB of dynamic range. The AS210-03 is programmable through the IEEE 488 interface in the AS210-01 Module Controller. Descriptions of other modules of the AS210 series are provided in separate publications referenced in the preface and available from ARGOSystems.
$1-2$

PHYSICAL AND ELECTRICAL DESCRIPTION

The AS210-03 Frequency Generator is modularly constructed for insertion in the AS210 Mainframe. The front panel contains controls for selection of frequency, output level, and a BNC connector for the output. The circuitry of the AS210-03 is mounted on one printed circuit card assembly and six Voltage Controlled Oscillator (VCO) subassemblies. The 10 MHz frequency output is provided directly by the Rubidium frequency standard from the Mainframe, while a $\div 10$ frequency divider provides the 1 MHz signal. Frequencies of $500,400,300,200,100$, and 50 MHz are obtained from the Phase-Locked Oscillators (PLO) locked to the Rubidium frequency standard. Output level is controlled via a digitally controlled step attenuator. The frequency and level controls are scanned periodically by the microprocessor in the AS210-01 Module Controller. This data is returned to the Frequency Generator in the form of commands for switching PLOs or the attenuator. Table 1-1 is an Equipment Specification for the AS210-03 installed in the AS210 Mainframe.

Figure 1.1 AS210-03 Frequency Generator Module

Table 1-1
AS210-03 EQUIPMENT SPECIFICATION

OUTPUT FREQUENCIES	$1,10,50,100,200,300,400$, or 500 MHz selectable
FREQUENCY ACCURACY	$\pm 6 \times 10^{-11}$ maximum from $10^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$ Less than $\pm 5 \times 10^{-11}$ maximum per day
HARMONIC CONTENT	
2nd HARMONIC	24 dB minimum below desired frequency
3rd HARMONIC AND ABOVE	30 dB minimum below desired frequency
NON-HARMONIC SPURIOUS RESPONSE	50 dB minimum below desired frequency
OUTPUT LEVELS	$1,10,20,32,40,50,100,500$, or 1000 millivolts selectable
OUTPUT LEVEL ACCURACY	
1 MHz TO 300 MHz	± 10 percent maximum, 5 percent typical
400-500 MHz	± 15 percent maximum, 5 percent typical
OPERATING TEMPERATURE	0° to $40^{\circ} \mathrm{C}$
POWER REQUIREMENT	Supplied by AS-210 Mainframe
WEIGHT	2.75 pounds

CHAPTER 2
INSTALLATION

2-1 INTRODUCTION

The AS210-03 Frequency Generator Module plugs into the AS210 Mainframe. The module is electrically connected through a rear edge connector and mechanically retained via a front panel locking bar.

NOTE 1: Because of the high retention force of the rear card edge connector, it may be necessary to pull on the RF LEVEL switch knob at the same time as the release mechanism is pulled, to remove the Frequency Generator from the Mainframe. (See Figure 3.1.)

NOTE 2: The power in the AS210 Mainframe must be turned OFF when inserting or removing the Frequency Generator Module.

CAUTION

AS210 series plug-ins will not work in Tektronix TM-500 series mainframes. Severe damage will result if operation in this mode is attempted.

Power and signal interface is provided through the Mainframe. The signal output is from a BNC connector on the front panel.

This chapter contains operation data and instructions for the Frequency Generator. Operator interface is provided through three controls and a connector on the front panel of the module. The AS210-03 is designed to be used in conjunction with the AS210-01 Module Controller. However, this interface is transparent to the user of the Frequency Generator. Chapter 5, Maintenance and Calibration, explains the self-diagnostic capability of the AS210-03 when used with the Module Controller.

3-2 CONTROLS AND CONNECTORS

Figure 3.1 is a front panel photograph of the Frequency Generator with index numbers keyed to Table 3-1.

3-3
OPERATING INSTRUCTIONS

The AS210-03 is connected via 50 ohm cable with a BNC connector. Select the desired standard frequency and choose the output level as required. A level adjustment is provided on the front panel for calibrating the LEVEL (mV) control. Specific procedures for this alignment are contained within the Maintenance chapter.

Figure 3.1 AS210-03 Controls and Connectors

Table 3-1
AS210-03 CONTROLS AND CONNECTORS

INDEX NUMBER (Figure 3-1)	PANEL MARKING	FUNCTION
1	FREQUENCY (MHz)	Selects one of eight standard frequencies: $1,10,50,100$, $200,300,400$, or 500 MHz
2	LEVEL (mV)	Selects one of nine output levels: 1, 10, 20, 32, $40,50,100,500$, or 1000 millivolts
3	OUTPUT	Output connector - BNG, 50 ohms
4	LEVEL ADJUST	Level calibration adjustment (see Chapter 5)
5	None	Release mechanism for retention and removal of the module

CHAPTER 4
THEORY OF OPERATION

4-1 INTRODUCTION

This chapter provides a description of the circuits used in the Frequency Generator. The circuit description is keyed to a functional block diagram and the schematic diagrams included in Chapter 5. Details of common type circuits (power supplies, etc.) are not included in this description.

4-2 OVERALL DESCRIPTION

The Frequency Generator circuit consists of the front panel controls and the circuit card assemblies. Al is the main circuit board assembly, the VCOs are A1A1 through A1A6. Figure 4.1 is a functional block diagram of the module depicting how the generator produces standard frequency outputs of $1,10,50,100,200,300,400$, and 500 MHz . Front panel controls select the desired frequency and output level. The Frequency Generator's front panel switches are interrogated 10 times per second by the module controller of the AS210 System. The frequency and level data are shifted from the module controller's Central Processing Unit (CPU) into latches (A1U11frequency, AlU8-level) on the generator through a bidirectional multiplexer AlU4, and AlU6. The CPU $\overline{R D}$ signal determines the direction of data flow through the multiplexer. Address bits A8 and A15 from the CPU are used to load frequency or level data from the data bus. The output of the front panel frequency select switch is also multiplexed with test data in AlU5 by address bit AO. Test data informs the CPU whether the PLOs are locked and that the output is leveled for self-test purposes.

Figure 4.1 Frequency Generator Functional Block Diagram

FREQUENCY GENERATION

The frequency generation circuits consist of six phase-locked oscillators (PLO), frequency reference dividers, PLO voltage supply gating circuits and the 1 and 10 MHz gating circuit. The PLO circuitry is composed of six voltage controlled oscillators (VCO) with a common frequency divider, phase comparator, and loop amplifier/filter. Six of the standard outputs are provided by the VCOs A1AX (with X equaling 1 through 6 for A1A1 through A1A6). These are the $500,400,300,200,100$, and 50 MHz outputs. The 10 MHz output is obtained directly from the reference input. The 1 MHz output is obtained by dividing the 10 MHz reference input by 10 . Only one output frequency can be obtained from the generator at a time. When the front panel switch is set for $50,100,200,300,400$, or 500 MHz , the applicable line from the frequency latch AlU11 (F50, F100, F200, F300, F400, or F500) activates one of six transistor switches (Q6-Q1). The switches allow 11 volts to be applied to the appropriate VCO. Each VCO (Figure 4.2 and schematic diagrams Figures 5.4 through 5.11) is identical except for the frequency-determining circuit elements. Component designators for the VCOs will be preceded by AlAX (with X equaling 1 through 6) to differentiate them from main board components. A varactor-controlled transistor oscillator (A1AXQ1, A1AXQ2) is tuned by a voltage from the phase detector A1U17 through the loop filter/amplifier AlU21. The RF output of the oscillator is provided at connector AlAXJ1.

4-4 PHASE LOCK SIGNAL

The RF output of all the PLOs is divided by 10 in A1AXU1, buffered by A1AXQ3 and divided again by AlAXU2 (except in the 50 MHz PLO). The frequency division accomplished by AlAXU2 is determined by the oscillator frequency. A 5 MHz oscillator output is desired from A1AXU2, therefore the division ratio is $f / n=5 \mathrm{MHz}$. For example, the 400 MHz PLO requires a $\div 8$ frequency division ($n=8$) at A1A2U2 since it has been previously divided by 10 at A1A2U1. In the case of the 50 MHz PLO, the original division by 10 yields 5 MHz .

WITH $X=1$ THROUGH 6 FOR A1A 1 THROUGH A1AG
A1A1 - 500 MHz VCO CIRCUIT CARD A1A2 -400 MHz VCO CIRCUIT CARD
A1A3 - 300 MHz VCO CIRCUIT CARD A1A4 - 200 MHz VCO CIRCUIT CARD A1A5-100 MHz VCO CIRCUIT CARD A1A6 - 50 MHz VCO CIRCUIT CARD
Figure 4.2 Voltage Controlled Oscillator (VCO) Block Diagram

The second output (J2) of the $V C O$, a 5 MHz signal, is supplied to circuit board A1 and is divided by 2 in A1U14 and applied to the phase detector AlU17 variable input. The 10 MHz reference from the Rubidium standard on the AS210 Mainframe is divided by 4 at A1U14 and A1U12 and the 2.5 MHz resultant signal is applied to the reference input of the phase detector. The phase detector's output is amplified, filtered (A1U21), and applied to the VCO as its tuning voltage. An unlock or unleveled condition test signal is also provided to the CPU for diagnostic purposes through multiplexer A1U5. When the 10 MHz output is selected, the 10 MHz frequency standard is gated to the output by the AlUll latch's F10 line. When the 1 MHz output is selected, a $\div 10$ frequency divider AlU13 is enabled by the AlU11 latch's F1 line. The selected RF signal is applied to a leveling circuit by a diode switching network.

4-6 OUTPUT AMPLITUDE LEVELING

The RF leveling circuit is provided to supply a constant one volt RMS signal to the digitally controlled step attenuator (assembly 117335). The level control loop consists of a current controlled variable attenuator AlU22, power amplifier A1U20, 3 dB power divider A1U19, detector A1CR3, and comparator AlU18. The output of the switching network is applied to the input of the variable attenuator AlU22. The signal from the output of the variable attenuator is amplified by AlU2O and applied to the input of the 3 dB power divider AlU19. One output of the power divider A1U19 is applied to the input of the digitally controlled step attenuator (assembly 117335). The other output of the power divider is detected by A1CR3 and then compared to a reference voltage by AlU18. The resulting error voltage is applied to the control input of the variable attenuator A1U22 through diode A1CR2 and resistor AlR19. Note: as the error voltage applied to diode A1CR2 increases, the attenuation of the RF signal passing through the variable attenuator A1U22 decreases. The error voltage may be monitored at the ALC test point on A1. A1R24 and A1C23 comprise a circuit to compensate for non-linearities
in the attenuator. A front panel control (1K) adjusts the output level by determining the reference voltage of the comparator. Comparator A1U15 provides an output to the CPU for diagnostic purposes. AlU15 determines when the signal level, detected by A1CR3, exceeds the threshold established by dividers A1R1, A1R3, A1R4, and A1R9. The output of A1U15 goes low to illuminate LED A1CR1 when an unleveled condition exists. This information is also sent to the CPU. An unlocked condition at A1U17 also provides an indication through AlU15 to the CPU. The attenuator level of the output signal is digitally controlled by the data from the level latch AlU8. The RF output signal is therefore provided at the frequency and amplitude selected by the front panel controls.

CHAPTER 5
 MAINTENANCE AND CALIBRATION

5-1 INTRODUCTION

The purpose of this chapter is to provide maintenance and calibration data for the AS210-03 Frequency Generator. Section I covers routine preventive maintenance procedures. Section II outlines performance tests for the Frequency Generator. Section III contains the calibration/alignment procedures for the AS210-03 module, and Section IV describes troubleshooting data. Figures 5.4 through 5.11 are the schematic diagrams of the Frequency Generator Module. Please contact the factory for any assistance required in the maintenance or servicing of the AS210-03.

SECTION

5-2 PREVENTIVE MAINTENANCE

Table 5-1 lists preventive maintenance checks and services which should be performed regularly.

Table 5-1
PREVENTIVE MAINTENANCE CHECKS AND SERVICES

ITEM	PROCEDURES
CABLES	Visually inspect cables for strained, cut, frayed, or other damaged insulation.
CLEANLINESS	Make sure the exterior surfaces of the unit are clean. If necessary, clean exterior surfaces as
	A. Remove the dust and loose dirt with a clean soft cloth. B. Remove dust or dirt from plugs and jacks with a brush.
	WARNING Use only warm soapy water for cleaning all plastic parts. Many solvents will cause the plastic to become brittle.
CORROSION	Make sure exterior surfaces of unit are free of rust and corrosion.
PRESERVATION	Inspect exterior surfaces of the unit for chipped paint or corrosion. If necessary, spot-paint surfaces as follows:
	A. Remove rust and corrosion from metal surfaces by lightly sanding them with sandpaper.
	B. Brush two coats of paint on base metal to protect it from further corrosion.

SECTION II

PERFORMANCE TESTING

This section describes the procedure to test the AS210-03 Frequency Generator to assure proper performance of the instrument. The AS210-03 must be used in conjunction with the AS210-01 Module Controller since the CPU in the AS210-01 monitors the controls and output of the AS210-03. The AS210-03 Frequency Generator will not operate without the AS210-01 Module Controller installed. If the AS210-03 fails any of the performance tests, please see Section III, Calibration/Alignment procedures, and/or Section IV, Troubleshooting procedures in this chapter.

5-4 RF OUTPUT FREQUENCY PERFORMANCE TEST

The following is a procedure for testing the eight selectable output frequencies of the AS210-03. Table 5-2 contains the required equipment to perform this test.

Table 5-2
REQUIRED TEST EQUIPMENT FOR RF OUTPUT FREQUENCY PERFORMANCE TEST

ITEM	RECOMMENDED TEST EQUIPMENT
ELECTRONIC COUNTER	HEWLETT-PACKARD 5345A FREQUENCY STANDARD COAXIAL CABLE (2 Required)

5-5 TEST PROCEDURE

A. Ensure that power is disconnected from the AS210 system before beginning this procedure.
B. Connect the equipment as indicated in Figure 5.1 and apply power to the AS210. The Rubidium Frequency Standard in the AS210 system will require 20 minutes warm-up time to reach the specified frequency accuracy.
C. Select the 100 millivolt output voltage level on the AS210-03. Starting with the 1 MHz output frequency, compare the frequency displayed by the electronic counter to Table 5-3 to verify the output frequency is within $1,000,000 \pm 0.01 \mathrm{~Hz}$. Continue this process through the remaining seven output frequencies available from the AS210-03. If any of the frequencies fall out of the limits for acceptable performance please see Section III, Calibration/Alignment Procedures, and/or Section IV, Troubleshooting Procedures.
D. Disconnect the frequency counter from the AS210-03.

Table 5-3
MINIMUM PERFORMANCE LIMITS FOR RF OUTPUT FREQUENCIES OF THE AS210-03

FREQUENCY (MHz)	ACCEPTABLE FREQUENCY RANGE
1	$1,000,000 \pm 0.01 \mathrm{~Hz}$
10	$10,000,000 \pm 0.1 \mathrm{~Hz}$
50	$50,000,000 \pm 0.5 \mathrm{~Hz}$
100	$100,000,000 \pm 1.0 \mathrm{~Hz}$
200	$200,000,000 \pm 2.0 \mathrm{~Hz}$
300	$300,000,000 \pm 3.0 \mathrm{~Hz}$
400	$400,000,000 \pm 4.0 \mathrm{~Hz}$
500	$500,000,000 \pm 5.0 \mathrm{~Hz}$

Figure 5.1 AS210-03 Frequency Generator RF Output Frequency Test Configuration

The following is a procedure for testing the nine RF output levels for each of the eight selectable output frequencies of the AS210-03. Table 5-4 contains the required equipment for this performance test.

Table 5-4
required TEST Equipment FOR RF OUTPUT level performance test

ITEM	RECOMMENDED TEST EQUIPMENT
RF VOLTMETER	BOONTON 92BD OPT O1, 09 WITH 50 OHM BNC ADAPTER
COAXIAL CABLE	3 FOOT LONG,50 OHMS, BNC

5-7 TEST PROCEDURE

A. Ensure that power is disconnected from the AS210 system before beginning this procedure.
B. Connect the equipment as indicated in Figure 5.2 and apply power. The Rubidium Frequency Standard in the AS210 system will require 20 minutes warm-up time to reach the specified frequency accuracy.
C. Starting with 1 MHz as the selected output frequency of the AS210-03 and one millivolt as the desired output voltage level, the RF voltmeter should read between 0.9 and $1.1 \mathrm{milli}-$ volts for acceptable performance. Next, change the output level to 10 millivolts. The RF voltmeter should read between 9 and 11 millivolts. Continue this process through the

Figure 5.2 AS210-03 Frequency Generator RF Output Voltage Level Test Configuration
remaining six output levels comparing the readings to Table 5-5 for acceptable performance. Select the 10 MHz output frequency and repeat the procedure for each RF voltage level. Continue this process until all output levels for each output frequency have been verified to be within the specified limits of Table 5-5. If any of the levels fall out of the range for acceptable performance, please see Section III, Calibration/ Alignment Procedures, and/or Section IV, Troubleshooting Procedures.
D. Disconnect the RF voltmeter from the AS210-03 output connector.
Table 5－5
MINIMUM PERFORMANCE LIMITS FOR RF OUTPUT VOLTAGE LEVEL OF THE AS210－03

8	爻	$\stackrel{8}{9}$	$\stackrel{8}{7}$	$\stackrel{\circ}{9}$	$\stackrel{8}{9}$	－	$\stackrel{8}{7}$	$\stackrel{8}{9}$	$\stackrel{8}{9}$
	$\underset{\Sigma}{\text { z }}$	8	\％	8	8	8	8	－	$\stackrel{\circ}{\infty}$
8	衣	合	只	요	会	会	융	$\stackrel{\sim}{\sim}$	$\stackrel{\sim}{\sim}$
	$\frac{\Sigma}{\Sigma}$	8	－	－8	\％	¢	8	$\stackrel{\sim}{7}$	$\stackrel{\sim}{4}$
O－1	希	$\stackrel{\text { O }}{\square}$	윽	윽	$\stackrel{\square}{7}$	$\stackrel{O}{\exists}$	$\stackrel{\square}{7}$	$\stackrel{\sim}{7}$	$\stackrel{n}{7}$
	立	8	8	8	8	8	8	∞	$\stackrel{\square}{\infty}$
8	雯	遈	通	边	$\stackrel{\sim}{\circ}$	$\stackrel{5}{0}$	$\stackrel{8}{5}$	in	$\stackrel{\square}{n}$
	$\underset{\Sigma}{\Sigma}$	4	8	\＆	4	$\stackrel{4}{8}$	8	¢	$\stackrel{\sim}{\sim}$
		F	\pm	\％	\％	寸	\％	9	$\mathscr{\square}$
		$\stackrel{\sim}{0}$	¢	¢	¢	¢	$\stackrel{\sim}{0}$	\＃	m
		$\begin{aligned} & \text { N } \\ & \stackrel{\rightharpoonup}{m} \end{aligned}$	$\begin{gathered} \text { N } \\ \stackrel{m}{m} \end{gathered}$	$\begin{aligned} & \text { N } \\ & \underset{\sim}{m} \end{aligned}$	$\underset{\sim}{\sim}$	$\begin{aligned} & \sim \\ & \dot{\sim} \end{aligned}$	$\begin{aligned} & \underset{m}{m} \\ & \dot{m} \end{aligned}$	$\begin{aligned} & \infty \\ & \stackrel{0}{0} \end{aligned}$	$\stackrel{\infty}{0}$
－	$\frac{\Sigma}{\Sigma}$	${\underset{\sim}{\sim}}_{\infty}^{\infty}$	$\begin{aligned} & \infty \\ & \infty \\ & \infty \end{aligned}$	$\begin{aligned} & \infty \\ & \underset{\sim}{\infty} \end{aligned}$	$\begin{aligned} & \infty \\ & \underset{\sim}{\infty} \end{aligned}$	$\begin{aligned} & \infty \\ & \underset{\sim}{\infty} \end{aligned}$	∞	$\underset{\sim}{\grave{N}}$	$\underset{\sim}{N}$
N	文	N	N	N	N	N	N	N	\cdots
	\sum_{Σ}	$\stackrel{\square}{-}$	$\underset{\sim}{\infty}$	$\stackrel{\infty}{-}$	$\stackrel{\infty}{-}$	$\underset{\sim}{\infty}$	$\stackrel{\infty}{\sim}$	$\stackrel{\sim}{7}$	今
응	$\frac{\times}{2}$	\exists	\exists	\exists	\cdots	$\overrightarrow{7}$	F	$\stackrel{\square}{7}$	$\stackrel{\sim}{\square}$
	立	a	0	0	0	σ	σ	$\stackrel{\sim}{\infty}$	$\stackrel{1}{6}$
\rightarrow	$\underset{\text { 㐅}}{\text { 㐅}}$	\cdots	\cdots	$\stackrel{-1}{-}$	\cdots	$\stackrel{-}{-1}$	$\stackrel{-}{-}$	$\stackrel{n}{\sim}$	$\stackrel{\sim}{\square}$
	$\frac{z}{\Sigma}$	$\dot{0}$	\vdots	$\dot{0}$	0	0	$\dot{0}$	$\begin{aligned} & \infty \\ & 0 \\ & 0 \end{aligned}$	$\stackrel{\infty}{\infty}$
		－	\bigcirc	i8	O	－	－	8	8

WARNING

The following Calibration/Alignment Procedures (Chapter 5, Section III), and Troubleshooting Procedures (Chapter 5, Section IV) are for use by qualified personnel only. To avoid personal injury, do not perform any servicing other than that of Routine Maintenance (Chapter 5, Section I), and Performance Testing (Chapter 5, Section II) unless you are qualified to do so.

Figure 5.3 is a flow diagram of the Calibration/Alignment Procedure for the AS210-03 Frequency Generator. Use this flow diagram with the theory of operation in Chapter 4, the text in this chapter, and the illustrated parts lists in Chapter 6. The AS210 internal frequency standard calibration data, contained in the AS210 mainframe operation and maintenance manual, is also referenced in this flow diagram. Please note it is not necessary to disassemble the AS210 system to determine if calibration/alignment is needed. For any assistance needed in performing this calibration/alignment procedure, please contact the factory.

5-9 ACCESS TO AS210-03 FREQUENCY GENERATOR MODULE

Please reference the AS210 mainframe manual for the disassembly procedure of the AS210 system to allow access to the AS210-03 Frequency Generator module. Access to the module circuitry itself is gained by removing the two metal side covers with a small straight-blade screwdriver. Place the module on one of its sides so that one cover is facing up. Starting with the end toward the edge connector, insert the screwdriver into one of the slots

Figure 5.3 Flow Diagram of Calibration/Alignment Procedure for AS210-03 Frequency Generator
where the cover mates with the module chassis and pry the cover up. It will be necessary to move along the slot toward the front panel of the module and repeat the prying action to loosen the side of the cover from the module. Repeat this technique to free the other side of the cover from the chassis. Set the free cover clear of the module and flip the module over so that the second cover is now facing up. Repeat the above procedure to free this cover.

5-10 PLO ALIGNMENT PROCEDURE

The following is the alignment procedure for the six phase-locked oscillators (PLO) in the AS210-03 Frequency Generator. Table 5-6 contains the required test equipment for this alignment procedure.

Table 5-6
required test equipment for the plo alignment procedure

ITEM	RECOMMENDED TEST EQUIPMENT
OSCILLOSCOPE WITH PROBES ELECTRONIC COUNTER COAXIAL CABLE	TEKTRONIX 465 OR EQUIVALENT HEWLETT PACKARD 5345A 3 FOOT LONG,50 OHM, BNC

A. Obtain access to the AS210-03 module circuits by referencing paragraph 5-9 in this chapter.
B. The individual frequencies of each PLO may be adjusted by C11 and R7 located on the respective VCO circuit board. In order to adjust the individual frequencies, monitor with the oscilloscope the Automatic Level Control (ALC) (U18 pin 6 or junction C17 and CR2 of assembly A1) and the VCO Tuning Voltage (TV) (junction of C5 and R10 of assembly Al). Please note
that the 500 MHz VCO circuit card is located closest to the front panel of the AS210-03. The 400, 300, 200, 100, and 50 MHz VCO circuit cards are located in descending order behind the 500 MHz VCO circuit card. The selected VCO circuit card will have CR3 dimly lit. All other VCO circuit cards will have CR3 brightly lit.
C. Select the desired frequency on the front panel and monitor the output frequency with the electronic counter.
D. Adjust C11 for a minimum ALC voltage of approximately 2 volts ± 1 VDC.
E. Now adjust R7 for a tuning voltage of 1 volt ± 1 VDC.

NOTE: It may be necessary to readjust C11 and R7 alternately due to the interaction of these adjustments.
F. After PLO adjustment, steps C, D, and E may need to be repeated.

The AS210-03 Frequency Generator output frequencies should now be aligned. To confirm that the Frequency Generator is operating properly, reference Section II, Performance Testing of the AS210-03, contained in this chapter.

5-11 OUTPUT LEVEL ALIGNMENT PROCEDURE

The following is the alignment procedure for the output level of the AS210-03 Frequency Generator. Table 5-7 contains the required test equipment for this alignment procedure.

Table 5-7
REQUIRED TEST EQUIPMENT FOR AS210-03 OUTPUT LEVEL ALIGNMENT PROCEDURE

ITEM	RECOMMENDED TEST EQUIPMENT
RF VOLTMETER	BOONTON 92BD OPT 01, 09 WITH 50 OHM BNC ADAPTER

A. Obtain access to the AS210-03 module circuits by referencing paragraph 5-9 in this chapter.
B. Connect the AS210-03 frequency generator output to the input of the RF voltmeter, as in Figure 5.2.
C. Select the 1000 millivolt output level and the 10 MHz output frequency with the front panel.
D. Adjust the front panel level adjustment for an output level of 1000 millivolts, while monitoring the output of AS210-03 with the RF voltmeter. It may be necessary to change this setting depending on the desired output level.
E. Adjust C 23 located on Al (117236) for a minimum amplitude difference between 400 MHz and 500 MHz by alternately selecting 400 and 500 MHz with frequency select knob on the front panel.

The AS210-03 Frequency Generator output levels should now be aligned. To confirm that the Frequency Generator is operating properly, reference Section II, Performance Testing of the AS210-03, contained in this chapter.

5-12 TROUBLESHOOTING PROCEDURES

Troubleshooting of the Frequency Generator is facilitated by a combination of error codes displayed on the Module Controller display and LED indicators on the main circuit card assembly, A1. The circuit card is illustrated in Figure 6.2. Table 5-8 correlates the error code, displayed on the Module Controller when a fault occurs, to the malfunction. An explanation of the problem is provided with possible solutions. Table 5-9 is a list of visual indicators on circuit card A1 and the meaning of their indications. Figures 5.4 through 5.11 are the schematic diagrams of the AS210-03. For further assistance, please contact the factory.

Table 5-8
ERROR CODE LISTING

ERROR CODE	PROBLEM	RECOMMENDED SOLUTION
3-03	1 MHz MALFUNCTION, NO LEVELING LOOP INDICATION	SEE TABLE 5-9
3-04	10 MHz MALFUNCTION, NO LEVELING LOOP INDICATION	SEE TABLE 5-9
$3-\mathrm{X1}$	$\begin{aligned} & \text { FREQUENCY X DID NOT PHASE-LOCK } \\ & \text { WHERE X IS O THROUGH } 5 \mathrm{AND} \\ & 0=50 \mathrm{MHz} \\ & 1=100 \mathrm{MHz} \\ & 2=200 \mathrm{MHz} \\ & 3=300 \mathrm{MHz} \\ & 4=400 \mathrm{MHz} \\ & 5=500 \mathrm{MHz} \end{aligned}$	CHECK PLO ALIGNMENT, SECTION III, THIS CHAPTER, AND SEE TABLE 5-9
$3-\times 2$	FREQUENCY X HAD NO LEVELING LOOP INDICATION WHERE X IS O THROUGH 5 (SEE 3-X1 ABOVE)	CHECK PLO ALIGNMENT, SECTION III, THIS CHAPTER, AND SEE TABLE 5-9

Table 5-9
VISUAL INDICATIONS

INDICATOR	PROBLEM	RECOMMENDED SOLUTION
AICR1 0 N	RF level from U20 is too high or too low (unleveled)	If on at only one frequency check that specific oscillator; if on at all frequencies, check Q7, U22, U20, U19, or U18
A1CR4 ON*	If AlCR5, CR6, CR7, and CR8 are also on (normal) problem with U17, U21, or the oscillator assembly is probable	Check U17, U21, and oscillator assembly
$\begin{aligned} & \text { A1CR5,CR6 } \\ & \text { OFF } \end{aligned}$	10 MHz reference signal Q8, U10, and U14	Check reference signal, Q8, U10, and U14
$\begin{aligned} & \text { A1CR7,CR8* } \\ & \text { OFF } \end{aligned}$	Oscillator assembly or U14	The LEDs are turned on by the 5 MHz output from one of the oscillators ($50-500 \mathrm{MHz}$) through U14; check the oscillator assembly or U14

*No meaning when 1 or 10 MHz selected.

5. \square-denotes interconnection

Figure 5.4 AS210-03 Frequency Generator; Microprocessor Interface, Al,
Schematic Diagram

NOTES: Unless otherwise specified

1. Interpret drawing in accordance with standard prescribed by MIL-STD-100.
2. All resistance values are in ohms, $1 / 4 \mathrm{~W}, \pm 5$ percent.
3. All capacitance values are in
4. \leftarrow-denotes signal ground.
5. \square-denotes interconnection on this drawing

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

. Interpret drawing in accordance with standard prescribed by MIL-STD-100.
2. All resistors are $1 / 8 \mathrm{~W}, 5$ percent carbon composition, except as noted.
3. All capacitance values are in pF, except as noted.
4. -denotes signal ground.
5. Factory selected jumper.

1. Interpret drawing in accordance with standard prescribed by MIL-STD-100.
2. All resistors are $1 / 8 \mathrm{~W}, 5$ percent carbon composition, except as noted.
3. All capacitance values are in ρF, except as noted.
4. denotes signal ground.
5. Factory selected jumper.

Figure 5.7 AS210-03 Frequency Generator 400 MHz , VCO, A1A2, Schematic Diagram

1. Interpret drawing in accordance with standard prescribed by MIL-STD-100.
2. All resistors are $1 / 8 \mathrm{~W}, 5$ percent carbon composition, except as noted.
3. All capacitance values are in ρF, except as noted.
4. \sim denotes signal ground.
5. Factory selected jumper.

Figure 5.8 AS210-03 Frequency Generator 300 MHz , VCO, AlA3, Schematic Diagram
 with standard prescribed by MIL-STD-100
2. All resistors are $1 / 8 \mathrm{~W}, 5$ percent carbon composition, except as noted.
3. All capacitance values are in pF , except as noted.
4. $<$-denotes signal ground.

Figure 5.9 AS210-03 Frequency Generator 200 MHz, VCO, A1A4, Schematic Diagram

Figure 5.10 AS210-03 Frequency Generator $100 \mathrm{MHz}, \mathrm{VCO}$, A1A5, Schematic Diagram|

1. Interpret drawing in accordance with standard prescribed by MIL-STD-100.
2. All resistors are $1 / 8 \mathrm{~W}$, 5 percent carbon composition, cent carbon comp.
except as noted.
3. All capacitance values are in ρF, except as noted.
4. $<$ denotes signal ground.
5. Factory selected jumper.

Figure 5.11 AS210-03 Frequency Generator 50 MHz , VCO, AlA6, Schematic Diagram
$\mathbf{1}$

CHAPTER 6

ILLUSTRATED PARTS LIST

6-1
INTRODUCTION

This chapter contains an illustrated parts list for the AS210-03 Frequency Generator Module. The assembly numbers and assembly title are listed at the top of the parts lists. The parts lists are divided into five columns and arranged in the following order:

```
Column 1 - Item Number
Column 2 - Quantity
    Quantity per assembly.
Column 3- Manufacturer's Part Number
        Please disregard the first two digits before the dash
        when referencing these part number.
            Column 4 - Description
        A brief description of the item.
            Column 5 - Reference Designation and Remarks
        The electrical or electronic designation of the item as
        shown on the schematic diagram, wiring diagram or
        interconnect diagram, and the Federal Supply Code for
        manuracturers.
```

	ASSEMBLY HUMBER 00-117170-01	
ITEM	ary	PART NUMBER
10	1.	00-117335-01
11	1.	10-1:7201-01
12	1.	10-117201-02
14	1.	01-117235-01
15	1.	01-117205-01
16	1.	01-117205-02
17	1.	01-117205-03
18	1.	01-117205-04
19	1.	01-117205-05
20	1.	01-117205-06
32	1.	10-117302-01
34	0.	14-250
35	1.	00-117357-01
39	6.	12-M524693-C4
40	2.	12-MS24693-Cl
41	1.	12-M524693-C2
42	1.	12-MS5 1957-26
44	2.	12-H524693-C30
45	3.	12-MAS620-C6
-46	3.	12-MS35332-136
50	3.	12-NAS620-C4

DESCRIPTION REF. DESIG. AMD REMARKS
attenuator assembly

FRAME SECTIUN - TOP

FRAME SECTION - BOTTOH

FREQUENCY GENERATOR ASSY

PHASE LOCKED OSC

BAR, GROUND TAB

HEATSINK COMPOUND

CABLE ASS'Y, COAXIAL

SCREW, FLH 4-40×3/8

SCREW, FLH 4-40×3/16

SCREW, FLH4-40N1/4

SCREW PNH 6-32×1/4

SCREU, FLH 6-32X 3/4

REDUCED OD FLAT WASHER WS

SPLIT LOCK WASHER 96

REDUCED OD FLAT UASHER W
ARGUSYSTEMS, 33472

200 MHZ
ARGOSYSTEMS, 33472
100 MHz \qquad
ARGOSYSTEMS, 33472
50 MHZ \qquad
ARGOSYSTEMS, 33472
ARGOSYSTEMS,33472
$20 Z \mathrm{JAR}$
THERMALEUTE
ARGOSYSTEMS,33472
\qquad

assembly	NUMEER 00-117170-01
QTY	PART NUMBER
1.	12-M535338-135
3.	12-NAS671-C4
3.	12-NAS671-C6
2.	13-1488-4
1.	00-117354-01
1.	10-117182-01
0.	WL-117199
2.	65-8127
2.	65-14378-01
2.	65-765-55
1.	17-22-01-2101
10.	17-08-50-0114
1.	00-117358-61
3.	12-MAS620-C10
1.	00-1 17356-0,
1.	10-117182-02
1.	10-117182-03
1.	18-3284-2240-00
1.	11-366-1690-01
1.	11-386-2402-05
1.	$11-200-1273-02$

FREQUENCY GENERATOR AS210-03	
OESCRIPTION	REF. DESIG. ANO REMARKS
SPLIT LOCK WASHER *4	
SMALL PATTERN HEX NUT 4	
small patt hex nut \#s	
LUG 4	
CABLE ASS'Y, 3 UIRE	
	ARGOSYSTEMS, 33472
PANEL, FRONT, LEXAN	
	ARGOSYSTEMS,33472
WIRE LIST	
	GRGUSYSTEMS. 33472
KNOB, BLACK	NOBEX
SWITCH, ROTARY, 30 DEGREE	-
	TUSE ELECTRUNIES
BUTTON, PLASTIC, BLUE	
	HOBEX
CONNECTOR, FLUG, 10 PIN	
	MOLEX, 27264
PIN, CRIMP	
	MOLEX, 27264
cable trimpot	
	ARGOSYSTEMS, 33472
REDUCED OD FLAT UASHER 10	-
EABLE, COAXIAL	
	ARUUSYSTEMS, 33472
Sub pahel, plastic	
	ARGOSYSTEMS, 33472
PGANEL, REAR	
	ARGOSYSTEMS, 33472
BNE TO OSM COn.	
	OHNI SFECTKA
LATCH PULL	
	TEKTRONIX, 80009
plastic fanel	
	TEKTRONIX,80009
aluminum panel	
	TEKTRONIX,90009

	ASSEMBLY MUMEER 00-117170-01		FREQUENCY LEMERATOR AS210-03	
ITEM	gty	PART NUMBER	OESCRIPTION	REF. DESIG. AND REMARKS
98	1.	11-105-0713-01	LATCH	
				TEKTRONIX, 8ưous
99	1.	11-105-07:9-00	LATCHER RETAINER	
				TEKTRONIX,80009
100	1.	11-426-0724-00	BOTTOM	
				TEKTRUNIX, 80009
101	2.	11-337-1399-00	SIDE COPER	
				TEKTRONIX, 80009
102	1.	1t-214-1061-00	TENSION SPRING	
				TEKTRON 1 K, 30009
103	1.	11-426-0725-00	TOP	
				TEKTRONIX,80009
104	2.	11-386-3657-01	GUIDE PIN	
				TEKTROHIX, 80G09
105	1.	12-00000	SCREW FLH, STL, SHEETMETAL $2 \times 1 / 4$	
106	4.	12-MS24693-C26	SCREU FLH 6-32×3/8	
107	4.	12-0000	SCREW PNH, STL, SHEETMETAL\#6\%3/8	

ITEN	ASSEMBLY HUMBER 01-117235-01		STANDARD FREQ, GENERATOR AI	
	gTy	PART NUMEER	OESCRIPTION	REF. OESIG. ANO REMARKS
4	1.	15-117238-01	PC BOARD	
				ARGOSY'SEMS, 33472
5	0.	**-117236	SCHEMATIC	-
				ARGOSYSTEMS,33472
6	0.	**-117235	ASSEMBLY DRAWING	-
				ARGOSYSTEMS, 33472
25	4.	30-CK05BX102K	. OOI UFD 10\% CERAMIC CAP	C17, C33, C34, ¢35
				81349
28	6.	30-CK 05BX103K	. O1UFD 10\% CERAMIC CAPACITOR	$\begin{aligned} & \text { C14, c36, C41, C42_ } \\ & \text { C37, c38 } \\ & 81349 \end{aligned}$
29	10.	30-CK 05BX104K	. IUFD 10\% CERAMIC CAPACITOR	$\begin{aligned} & \text { c1, c3, c5, c7, c22,c40 } \\ & \text { c39, C43, c50, } 651 \\ & 81349 \end{aligned}$
30	6.	30-300-50-601-105M	1UFD 20\% CERAMIC CAPACITOR	c2, $\mathrm{C} 4, \mathrm{C6}, \mathrm{C8}, \mathrm{C} 21, \mathrm{C} 24$
			- -	81349
31	6.	30-CK058×471K	470PFD 10\% CERAMIC CAPACITOR	$\begin{aligned} & \text { C15, c16, c20, c25, C26_ } \\ & \text { C28, } \\ & 81349 \end{aligned}$
33	5.	30-CK 058×473K	. 047UFD 10\% CERAMIC CAPACITOR	C9, $\mathrm{C} 10, \mathrm{C} 11, \mathrm{C} 12, \mathrm{C} 29 \ldots$
				81349
34	1.	30-CMO4FA391JS	390 PF SILVER MICA	C49___
				81349
35	1.	30-CK05BX104K	. 1 UFD 10\% CERAMIC CAP	C49.
				81349
36	6.	30-1960156×9020KA1	15UFD 10\% SOLID TANTALUM	$\begin{aligned} & \mathrm{C} 13, \mathrm{c} 44, \mathrm{C} 45, \mathrm{C} 46, \mathrm{C} 47, \\ & \mathrm{C} 48 \\ & 81349 \end{aligned}$
38	1.	30-CSR\{3G106KL	10 OFD SOY ELEETROLYTIC CAP	C18___
				81349
42	1.	30-513-010-A2-10	2-10 PFD YARIA日LE CAPACITOR	C23
				ERIE, 72982
50	2.	30-CK05BX472K	. 0047UFD 10\% CERAMIC CAPACITOR	c30, c32
				81349
51	1.	30-CK05BX681K	680 PFD 10\% CERAMIC CAPACITOR	C27
		+		81349
52	2.	30-CK05BX682K	. 0068 UFD 10\% CERAMIC CAP	C19, $\mathrm{C3O}^{\ldots}$
				81349
53	1.	30-CK05BX101K	100 PF 10\% CERAMIC CAPACITOR	$\mathrm{C52}$
				81349
73	6.	60-5082-4487	LED	CR1, CR4, CR5, CR6, CR7, CR8 \qquad

	ASSEMBLY NUMBER 01-117235-01		STANOARD FREQ. GENERATOR AI		
ITEM	QTY	Part number	DESCRIPTION		REF. DESIG. AND REMARKS
145	1.	35-RCR07G681 JS	680 OHM 5\% 1/4W	CARBON COMP	R14
					81349
146	1.	35-RCR 07G122JS	1.2K OHM, 5% 1/4W	46 CARBON COMP	R13
					81349
147	3 3:	35-RCR 07G223JS	22K OHM 5\% 1/4W	CARSON COMP	R11, R79, R80
					81349
148	. 2.	35-RCR 07G332JS	3.3K OHM 5\% $1 / 4 \mathrm{~W}$	CAREON COMP	R10, R45
					81349
149	1.	35-RCR 07G392 JS	3.9K OHM 5\% 1/4W	CARBON COMP	R12
					81349
150	2.	35-RCR076471JS	470 OHM 5\% 1/4W	CARBON COMP	R19, R35
			-		81349
151	13.	35-RCROPG472 JS	4.7 OHM 5\% 1/4W	CARBON CUMP	$\begin{aligned} & \text { R16, R18, R22, R27, R30, } \\ & \text { R37, R40, R2, R28, R33, R34, -_ } \\ & \text { RS0, R52 } \\ & 81349 \end{aligned}$
154	2.	35-RCROPG242JS	2.4K OHM 5\% 1/4H	CARBOH COMP	R90.R93
	-				81349
155	2.	35-RCR 076510.45	51 OHM 5\% 1/4W CA	ARBON COMP	R23,R31
					81349
157	3.	35-RCR 07G821 JS	820 OHM 5\% 1/4U C	CARgON COMP	R4, R41, R4?
					81349
159	1.	35-RCR07G750JS	75 OHM 5\% 1/46 CA	ARBON COMP	R24____
					$\overline{81349}$
164	5.	35-RCR 076222 dS	2.2K OHM, 5\% 1/44	4 CARBUN COMP	R1, R32; R38, R77, R78
					81349
167	1.	35-RCR 07G622 JS	6.2K OHM 5\% 1/4W	CARBON COMP	R15
					81349
168		35-RCR07G333JS	33K OHM 5\% 1:46 C	CARBON COMP	$R 51$
					81349
170	4:	35-RCR07G101 JS	100 OHM 5\% 1/4W	CAREON COMP	R43, R46,R4日, R49
	1				81349
171	8.	35-RCRO7G301 JS	300 OHM 5\% 1/4W	CAREON COMP	$\begin{aligned} & \text { R53, R55, R61,R63,R57,R59, } \\ & \text { R日9,R65 } \\ & 81349 \end{aligned}$
174	1.	35-RCR076201JS	200 OHM 5\% 1/4W C	CARBON COMP	R92
					81349
177	10.	35-RCR07G512JS	5.1K OHM 5\% $1 / 4 \mathrm{H}$	CARBON COMP	$\begin{aligned} & R 54, R 56, R 58, R 60, R 62, R 64, \\ & \text { R66,R67,R91,R94 } \\ & \text { Q1349 } \end{aligned}$
183	4.	35-RCR 056472JS	4.7K OHM 5\% 1/8W	CARBON COMP	R85, R86, R87, RB8___
				'	81349

ITEM	Assembly number 01-117235-01		Standaro freg. Generator al	
	Qty	PART HUMber	DESCRIPTIOH	REF. DESIG. AND REMARKS
264	1.	47-LA32 OMP-12	-12 VOLT REGULATOR	42
				NATIOHAL, 27014
268	1.	47-CA2820	RF AMPLIFIER	420
				T.R.W.,01281
270	$3:$	13-20108-1	TERMINAL	

Figure 6.2 AS210-03 Frequency Generator Assembly, A1

ASSEMBLY NUMBER 00-117335-01			attenlator assembly	REF. DESIG. AHD REMAPKS
1 TEM	gty	Part number	DESCRIPTION	
2	1.	10-117200-01	PLATE, MOUNTIMG	
				ARGOSYSTEMS,33472
6	1.	20-117191-01	ATTENUATOR, 0-63 DE	
				ARGOSYSTEMS,33472
8	1.	17-22-01-2071	COHHECTOR, PLUG 7 PIN	
				HOLEX, 27264
10	7.	17-08-50-0114	PIN, CRIMP	
				MÜLEX, 27264
12	2.	12-MS24693-C46	SCREW FLM \#8-32 $\times 1 / 4$	
14	4.	12-MS51957-13	SCREW, PNH, 4-40 $\times 1 / 4$	-
15	4.	12-NAS620-C4	REDUCED OD FLAT WASHER \#4	-
16	4.	12-MS35338-135	SPLIT LOCK WASHER \#4	-3-_
19	0.	16-ET 26 AWG	UIPE, 26 AWG STRANDED TEFLOH	
-				92005
20	1.	47-MC7824CT	24 VOLT REGULATOR	1330
				Mútupula, 27014

ASSEMBLY NUMBER 01-117205-01			PHASE-LOCKED USCILLATOR	
ITEM	QTY	PART HUMBER	OESCRIPTION	REF. DESIG. ANO REMARKS
4	1.	15-117208-01	PC BOARD	
				ARGOSYSTEMS, 33472
5	0.	**-117206-01	SCHEMATIC	
				ARGOSYSTEMS.33472
6	$\begin{aligned} & 1 \\ & 0 . \end{aligned}$	**-117205-01	ASSEMBLY DRAWING	\qquad
				ARCOSYSTEMS,33472
27	8.	30-100-50-W5R-471J	470 PFD 5\% CERAMIC CAPACITOR	C3, $\mathrm{CP}, \mathrm{CTO}, \mathrm{C14}, \mathrm{C15}$
				CENTRE ENG. 51642
28	2.	30-100-100-Coc689 J	6.8 PFD 5\% CERAMIC CAPACITOR	C8, C9
				CENTRE ENG. 51642
31	2.	30-300-50-601-105M	IUFD 20% CERAMIC CAPACITOR	C1, $\mathrm{C2}_{2}$
				CENTRE ENG. 51642
35	3.	30-CK 05BX 104 K	. IUFD 20\% CERAMIC CAPACITOR	C4. C19, C 20
				81349
38	1.	30-513-010-92-10	2-10 PFD VARIABLE CAPACITOR	C5
				ERIE, 72982
39	1.	30-518-002-A2-5	2-5 PFD Yaritable capacitor	C11
				ERIE, 72982
50	2.	55-HV12098	TUNING DIDDE	CR1, CR2___
				MOTOROLA, 047!3
54	1.	55-1N6263	SCHOTTKY GARRIER DIODE	CR4
				H.P., 54839
55	1.	60-5082-4487	LIGHT EMITTING DIODE	CR3
				H.P.,50434
59	1.	18-22-16-2031	3 PIN CONHECTOR	$ل 1$
				MOLEX, 27264
60	1.	18-22-16-2061	6 PIN CONNECTOR	S2
				MOLEX,27264
73	1.	25-117305-08	TAPPED INDUCTOR	L1.
				ARIGOSYSTEMS,33472
74	1.	25-117305-07	TAPPED INOUCTOR	L2
				ARGOSYSTEMS,33472
75	2.	25-117305-01	1 TURN FERRITE CHOKE	L3, L5_________
				ARGOSYSTEMS, 33472
79	1.	25-1025-20	IUHY RF CHOKE	L4___
				DELEVAN, 99800
83	2.	50-MMT2857	NPN TRANSISTOR	Q1, Q2_
				MOTOROLA, 04713

	ASSEMBLY NUMBER 01-117205-01		PHASE-LOCKED OSCILLATOR		
ITEM	QTY	Part number	DESCRIPTION		REF. DESIG. AND REMARKS
84	1.	50-MP 33639	PNP TRANSISTOR		Q3
		-			MOTOROLA, 04713
87	1.	50-2N2222A	HPN TRANSISTOR		Q4
			.		NATIOHAL, 27014
96	2.	35-RCR05G102JS	1K OHM 5\% 1/8U C	CARBOH COMP	R12, R13
					81349
97	1.	35-RCR05G221JS	220 OHM 5\% 1/8U	CARBON COMP	R10
					81349
99	1.	35-RCR05G223JS	22K OHH 5\% 1/8W	CARBON COMP	R1
					81349
99	1.	35-RCR056390.JS	39 OHM 5\% 1/8W C	CARBON COMP	R8
					81349
100	3.	35-RCR05G471JS	470 OHM 5\% 1/8W	CARBON COMP	R3, R4, R6
					81349
101	1.	35-RCR05G472JS	4.7K OHM 5\% 1/8U	CARBON COMP	R14
					81349
102	1.	35-RCR0S6821 JS	820 OHM 5\% 1/8W	CARBON COMP	R9
					81349
103	2.	35-RCR 05G151J3	150 OHM 5\% 1/84	CAREON COMP	R2, R5
					81349
104	1.	35-RCR05G621J3	620 OHM 5\% 1/84	CAREON COMP	R11
					81349
106	1.	36-82-PAR-2K	2K OHM Yariable	RESISTOR	R7
					BECKMAN, 73138
109	1.	47-5P8630	decade counter		$U 1$
					PLESSEY, 551.54
111	1.	47-LA341P-5	5 VOLT REGULATOR		U3
					NATIONAL, 27014
113	1.	47-74196H	DECADE COUNTER		U2,

ASSEMBLY HUMBER 01-117205-02
PHASE LOCKEO OSCILLATOR

	PART NUMBER	DESCRIPTION
1.	15-117208	PC BOARD
0.	**-117206-02	SCHEMATIC
0.	+*-117205-02	ASSEMELY DRAWING
θ.	30-100-50-65R-471 J	470PFD 5\% CERAMIC CAPACITOR
2.	30-100-100-coc689J	6.8 PFD 5\% CERAMIC CAPACITOR
2.	30-300-50-60t-105M	IUFD 20\% CERAMIC CAPACITOR
3.	30-CK058×104K	.1UFD 10\% CERAMIC CAPACITOR
1.	30-513-010-A2-10	2-10PFD YARIABLE CAPACITOR
1.	30-518-002-A2-5	2-5PFD VARIABLE CAPACITOR
2.	S5-MV12098	TUNING DIODE
1.	55-1N6263	SCHOTTKY BARRIER DIODE
1.	60-5082-4487	LIGHT EMITTING DIODE
1.	18-22-16-2031	3 PIM CONHECTOR
1.	18-22-16-2061	6 PIN CONAECTOR
1.	25-117305-08	TAPPED IHOUCTOR
1.	25-117305-07	TAPPED INDUCTOR
2.	25-117305-01	1 TURN FERRITE CHOKE
1.	25-1025-20	1 UHY RF CHOKE
2.	50-MMT2857	NPN TRANSISTOR

	PART NUMBER	DESCRIPTION
1.	15-117208	PC BOARD
0.	**-117206-02	SCHEMATIC
0.	+*-117205-02	ASSEMELY DRAWING
θ.	30-100-50-65R-471 J	470PFD 5\% CERAMIC CAPACITOR
2.	30-100-100-coc689J	6.8 PFD 5\% CERAMIC CAPACITOR
2.	30-300-50-60t-105M	IUFD 20\% CERAMIC CAPACITOR
3.	30-CK058×104K	.1UFD 10\% CERAMIC CAPACITOR
1.	30-513-010-A2-10	2-10PFD YARIABLE CAPACITOR
1.	30-518-002-A2-5	2-5PFD VARIABLE CAPACITOR
2.	S5-MV12098	TUNING DIODE
1.	55-1N6263	SCHOTTKY BARRIER DIODE
1.	60-5082-4487	LIGHT EMITTING DIODE
1.	18-22-16-2031	3 PIM CONHECTOR
1.	18-22-16-2061	6 PIN CONAECTOR
1.	25-117305-08	TAPPED IHOUCTOR
1.	25-117305-07	TAPPED INDUCTOR
2.	25-117305-01	1 TURN FERRITE CHOKE
1.	25-1025-20	1 UHY RF CHOKE
2.	50-MMT2857	NPN TRANSISTOR

PART NUMBER
15-117208
3.

1. 30-513-010-A2-10
2.
3. 55-1 N6263
4. 60-5082-4497
5. $18-22-16-2031$
6. 18-22-16-206
1.25-117305-08
7. 25-117305-07
8. 25-117305-01
9. 25-1 025-20

2

REF. DESIG. ANG REMARKS
ARGOSYSTEMS, 33472
\qquad
ARGOSYSTEMS, 33472
ARGOSYSTEMS, 33472
C3, C7, C10, C14-18__
CENTRE ENG., 51642
C8, C9_

CENTRE ENG., 51642
C1, C2
CENTRE ENG., 51642
C4, C13, C20 \qquad

$$
\overline{81349}
$$

$C 5$
ERIE, 72982

C11 \qquad
ERIE, 72982
CR1, CR2 \qquad
MOTOROLA, 04713
CR4
H.P.. 54893

CR3 \qquad
H.P., 50434
J
MOLEX, 27264
J2
MOLEX, 27264
L!
ARGÜSYSTEMS, 33472
$L 2$
ARGOSYSTENS, 33472
L3. L5 \qquad
ARGOSYSTEMS, 33472
14
DELEVAN, 99800
Q1. Q2 \qquad
MOTOROLA, 04713

ITEN	aSSEMELY NUMBER 01-117205-02		PHASE LOCKED OSCILLATOR	
	QTY	PART NUMBER	DESCRIPTION	REF. DESIG. ANO REMARKS
82	1.	50-MP93639	PNP TRANSISTOR	03
				MGTGROLA, 04713
84	1.	50-2N2222A	NPN TRAHSISTOR	Q4.
				HATIONAL, 27014
96	2.	3S-RCR 05G 102 JS	1K OHM 5% 1/8W CARBON COMP	R12, R13
				81349
97	2.	35-RCR 05G151JS	150 OHMS 5\% 1/8 CARBON COMP	R2, R10
				81349
98	1.	35-RCR 05G223JS	22K OHMS 5\% 1/8W CARBON COMP	R1
				81349
99	1.	35-RCR 056390J3	39 OHM 5\% 1,84 CARBOH COMP	Ra
				81349
100	4.	35-RCR 056471 JS	470 OHM 5\% 1/8W CARBON COMP	R3, R4, R5, R6
				$\overline{81349}$
101	1.	35-RCR 05G472 JS	4.7K OHM 5\% 1/8U CARBON COMP	R14
			.	$\overline{81349}$
102	1.	35-RCR 05G82 1 JS	820 OHM 5\% 1/8U CARBON COMP	R9
				81349
103	1.	35-RCR05G621 JS	620 0HM, 5\% 1/8 U, CARBON COMP	R11
				81349 .
106	1.	36-82-PAR-2K	2K OHM Yariable resistor	R7
				BECKMAN, 73139
108	1.	47-SP8630	IC. DECADE COUNTER	Ut.
				PLESSEY, 55154
110	1.	46-LM341P-5	5 YOLT REGULATOR	43
				NATIONAL, 27014
121	1.	47-74197N	OECADE COUNTER	42
				T.1., 01295

1 TEM	ASSEMBLY NUMEER 01-117205-03		PHASE LOCKED OSCILLATOR	REF, DESIG, AMD REMARKS
	QTY	PART NUMBER	DESCRIPTION	
4	1.	15-117208	PC BOARD	
				ARGOSYSTEMS, 33472
5	0.	**-f17206-03	SCHEMATIC	
				ARGOSYSTEMS, 33472
6	0.	**-117205-03	ASSEMBLY DRAWING	-
				ARGOSYSTEMS, 33472
27	θ.	30-100-50-65R-471J	470 PFD 5\% CERAMIC CAPACITOR	C3, $\mathrm{C}, \mathrm{C}, \mathrm{Cl}, \mathrm{C14-18}$
				CENTRE, 51642
28	2.	30-100-100-C06689J	6.8 PFD 5\% CERAMIC CAPACITOR	C8, C9
				CENTRE,51642
30	2.	30-300-50-60i-105M	IUFD 20\% CERAMIC CAPACITOR	C1. C2
				CENTRE, 51642
34	3.	30-CK 05BX104K	. IUFD 10\% CERAMIC CAPACITOR	C4, $\mathrm{C19}$, $\mathrm{C2O}$
				81349
38	1.	30-513-010-A2-10	2-10PFD YARIABLE CAPACITOR	c5
				ERIE,72982
39	1.	3.4-518-002-A2-5	2-5PFD Yariable capacitor	C11_
				ERIE,72982
30	2.	35-MV12098	TUNING DIODE	CR1, CR2
				MOTOROLA, 04713
54	1.	55-1M6263	SCHOTTKY BARRIER DIDEE	CR4
				H. P., 54893
55	1.	55-5 082-4487	LIGHT EMITTING DIODE	CR3
				H.F. 50434
38	1.	18-22-16-2031	3 PIN CONNECTOR	Jt
				MOLEX, 27264
59	1.	18-22-16-2061	6 PIN CONNECTOR	J 2
				MOLEX,27264
62	1.	25-117305-07	TAPPED INDUCTOR	L1_
				ARGOSYSTEMS, 33472
63	1.	25-117305-06	TAPPED INDUCTOR	L2
				AFGOSYSTEMS,33472
64	2.	25-117305-01	1 TURN FERRITE CHOKE	L3, L5_
				ARGOSYSTEMS,33472
67	1.	25-1025-20	1 UHY RF CHOKE	L4
				DELEYAN,99800
73	2.	50-MMT2857	NPN TRANSISTOR	Q1. Q2_____
				MOTOROLA, 04713

	ASSEMBL	NUMBER 01－117205－03	PHASE LOCKED OSCILLATOR
ITEM	aty	PART NUMBER	DESCRIPTION
74	1.	50－MPS3639	PNP TRANSISTOR
78	1.	50－2N2222A	NPN TRANSISTOR
96	2.	35－RCR U5G102JS	1K OHM 5\％1／BU CARBON COMP
97	1.	35－RCR05G151J9	150 OHM 5\％ $1 / 8 \mathrm{CL}$ CARBON COMP
98	1.	35－RCR 056223 JS	22K OHMS 5\％1／8W CARBON COMP
99	1.	35－RCR056390JS	39 OHM 5\％1，8W CARBON COMF
100	4.	35－RCR 05G47：JS	470 OHM 5\％1／8W CARBOH COMP
102	1.	35－RCR $05 \mathrm{G821}$ JS．	820 OHM 5\％1／8U CARBON CUMP
103	1.	35－RCRO5G62i JS	620 OHM 5\％1／8W CARBION COMP
104	1.	35－RCROSG22 1 JS	220 OHM 5\％1／EW CAREON COMP
106	1.	36－82－PAR－2K	2K OHM YARIABLE RESISTOR
109	1.	47－SP9630	IC decade counter
111	1.	46－L．M341－5	5 VOLT REGULATOR
113	1.	47－74L392M	COUNTER

Figure 6.3 AS210-03 Frequency Generator VCO Circuit Card Assemblies AlAl (500 MHz), A1A2 (400 MHz), and A1A3 (300 MHz)

1 TEM	ASSEMBLY NUMBER 01-117205-04		PHASE LOCKED OSCILLATOR	
	QTY	PART NUMBER	DESCRIPTION	REF. DESIG. AND REMARKS
82	1.	50-MPS3639	PNP TRANSISTOR	Q3
				MOTOROLA, 04713
84	1.	50-2N22:2A	NPN TRANSISTOR	Q4
				MAT10NAL, 27014
96	2.	35-RCR 05G102 JS	IK OHM 5\% 1/BU CARBON COMP	R12, RI3
				81349
97	1.	35-RCR 05G151 JS	; 50 OHM 5\% 1/BU CARBON COMP	R10
				81349
98	1.	35-RCRU5G223JS	22K OHMS 5\% 1/8U CARBON COMP	
				81349
99	1.	35-RCR0530iJs	300 OHM 5\% 1/8U CARBON COMP	R2
				81349
100	1.	35-RCR 05G390JS	39. OHM 5\% 1/OW CARBON COMP	P8
				81349
101	4.	35-RCR05G471 JS	470 OHM 5\% 1/8U CARBOH COMP	R3, R4, R5, R6
				81349
102	1.	35-RCR 056472 JS	4.7K OHM 5\% 1/8U CARBON COMP	R14
				81349
103	2.	35-RCR 05682 ${ }^{\text {J }}$ S	820 OHM 5\% 1/8W CARBOH COMP	R9
				81349
104	1.	35-RCRO5G62 ${ }^{\text {IS }}$	620 OHM 5\% :/ 8 CA CARBON COMP	R11
	.			81349
$\dagger 06$	1.	36-82-PAR-2K	2K OHM YARIABLE RESISTOR	R7
				BECKMAN,73139
109	1.	47-SP9630	Ic dechoe counter	
				PLESSEY,55154
111	1.	47-LM341P-5	5 YOLT REGULATOR	43
				NATIOHAL, 27014
113	1.	47-74197N	decade counter	U2
				T.I.,01295

ASSEMBLY NUMGER 01-117205-05			PHASE-LOCKED OSCILLATOR	
ITEM	QTY	PART NUMBER	DESCRIPTION	PEF. DESIG. ANO REMARKS
37	1.	25-1025-20	IUHY RF CHOKE	L4
				DELEYAN, 99800
80	2.	50-MMT2857	MPN TRANSISTOR	Q1. 02
		.		MOTOROLA, 04713
81	1.	55-MPS3639	PNP TRANSISTOR	Q3
				MOTOROLA, 04713
83	1.	50-2N2222A	HPN TRANSISTOR	04
				HATIOMAL, 27014
96	2.	35-RCR 05G102JS	IK OHM 5\% 1/8W CARBON COMP	R12, R13
				61349
97	1.	35-RCR 05G15iJs	150 OHHS 5\% 1/8W CARBON COMP	R10
				81349
98	1.	35-RCR 056223JS	22K OHMS 5\% 1/8w CARBON COMP	RI
				81349
99	1.	35-RCR 05G390JS.	39 OHM 5\% 1/8w CAREON COMP	R8
				81349
100	5.	35-RCR 05G471 JS	470 OHM 5\% 1/8w CARBON COMP	R2, R3-R6___
				81349
101	1.	35-RCR05G472JS	4.7 OHM 5\% 1/8U CAREOH COMP	R14
				81349
102	2.	35-RCR $05 \mathrm{GB21}$ JS	920 OHM 5\% 1/8W CARBON COMP	R9_1_____
				81349
103	1.	35-RCR056621 Js.	620 OHM 5\% 1/8W CARBON COMP	
				81349
106	1.	36-82-PAR-2K	2K OHM VARIABLE RESISTOR	R 7
				EECKMAN, 73139
110	1.	47-5P8630	OECADE COUNTER	
				PLESSEY, 55154
112	1.	47-LM341P-5	5 YOLT REGULATOR	
				NATIONAL, 27014
114	1.	47-74197N	decade counter	
				T.I.,01295

	assembl	MUMEER 01-117205-06	PHASE LOCKED OSCILLATOR	
ITEM	Qty	PART NUMGER	OESCRIPTION	REF. DESIG. AND REMARKS
4	1.	15-1:72086	PC BOARD	
				AFGOSYSTEMS,33472
5	0.	**-1 $17206-06$	Schematic	-
				ARGOSYSTEMS, 33472
6	0.	*m-117205-06	ASSEmbly draulng	-
				ARCOSYSTEMS, 33472
27	8.	3i0-100-50-U5R-4713	470 PFD 5\% CERAMIC CAPACITOR	C3, C7, C1O, C14-C18
				CENTRE ENG., 51642
28	1.	30-100-100-coc339J	3.3PFD 5\% CERAMIC CAPACITOR	C13
				CEMTRE ENG. 51649
29	2.	$\therefore 30-100-100-\operatorname{coc689} \mathrm{J}$	6.8 PFD 5\% CERAMIC CAP	C8, cs.
				CENTRE ENG.,51642
30	2.	30-200-100-cog270」	27 PFD 5: CERAMIC CAPACITOR	C6. C21
				EENTRE ENG.,51542
31	2.	30-300-50-601-105M	1 UFD 20\% CERAMIC CAPACITUR	C1. C 2
				CENTRE ENG. 51642
35	2.	30-CK058×104K	. 1 UFD 10\% CERAMIC CAPACITOR	C4, C 19 _
				81349
39	1.	30-513-010-A2-10	2-1 OPFD YARIABLE CAPACITOR	
				ERIE, 72982
40	1.	30-518-0.02-A2-5	2-5PFD YARIABLE CAPACITOR	Cil
		-		ER1E,72982
50	2.	55-MY12098	TUNING DIODE	CRI, CR2 _ _
				MOTOROLA, 04713
54	1.	55-1 H6263	SCHOTTKY GARRIER DIODE	CR4
				H.P. 54893
55	1.	35-5082-4487	LIGHT EMITTING DIDDE	CR3
				H.P., 50434
58	1.	18-22-16-2031	3 PIN CONNECTOR	J1
				MULEX, 27264
59	1.	19-22-16-2061	6 PIN COMNECTOR	
				MOLEX, 27264
61	1.	25-117305-03	TAPPED INDUCTOR	$\mathrm{Ci}^{\text {CH_}}$
		\cdot		ARGOSYSTEMS, 33472
62	1.	25-117305-04	TAPPED INDUCTOR	L2_______m_
				ARGOSYSTEMS,33472
63	2.	25-117305-01	1 TURN FERRITE CHOKE	
				ARGOSYSTEMS, 33472

	ASSEMBL	NUMEER 01-117205-06	Phase locked uscillatur	
ITEM	aty	PART HUMBEP	DESCRIPTION	REF. DESIG. AND REMARKS
66	1.	25-1025-20	1 UHY RF CHUKKE	L4
				DELEYAN, 99800
73	2.	50-MMT2857	NPN TRANSISTOR	Q1, $\mathrm{Q2}^{\ldots}$
				MOTOROLA, 04713
74	1.	50-MPS3639	PNP TRANSISTOR	Q3
				MOTOROLA, 04713
78	1.	50-2N2222A	NPN TRANSISTOR	Q4_
				MATIONAL, 27014
96	2.	35-RCR 05G 02 JS	1K OHM 5\% 1/8W CARBON COMP	R12, Ri3
				81349
97	1.	35-RCR Ú5G:51 JS	150 OHM 5\% 1/EU CAREOH COMP	R10
				81349
98	1.	35-RCR 05G223JS	22K OHMS 5\% 1/8W CARBON COMP	RI
				81349
99	1.	35-RCR O5G390JS	33 OHM 5\% 1/8W CARBON COMP	Re
				81349
100	5.	35-RCR05G471JS	470 OHM 5\% 1/8W CARBON COMP	R2, R3, R4, R5, R6
				81349
101	2.	35-RCR 056321 JS	820 OHM 5\% 1/8U CARBON COMP	'P9. R1I
-				81349
105	1.	36-82-PAR-2K	2K OHM Yariable resistor	R7
				BECKMAN, 73139
107	1.	47-SP8630	DECADE COUNTER	UI
				PLESSEY, 55154
109	1.	47-LM341P-5	5 YOLT PEGULATOR	
				NATIOMAL, 27014

A1A4, 200 MHz BACK SIDE

A1A5, 100 MHz BACK SIDE

A1A6, 50 MHz BACK SIDE

A1A6, 50 MHz
COMPONENT SIDE

Figure 6.4 AS210-03 Frequency Generator VCO Circuit Card Assemblies A1A4 (200 MHz), AlA5 (100 MHz), and AlA6 (50 MHz)

ASSEMBLY NUMBER 00-1:7356-01			CABLE ASSEMBLY	REF. DESIG. AND REMARKS
ITEM	QTY	PART NUMEER	DESCRIPTION	
5	1.	17-55-607-9172-31	OSM CONNECTOR, STRAIGHT	
				SEALECTRO, 98291
6	1.	\|7-55-611-3702-31	OSH CONNECTOR, RIGHT ANGLE	
				SEALECTRO, 98291
7	0.	16-UT-8SCTP	. 085 SEMI-R1GID CABLE	-

AESEMBLY HUMBER 00-11:358-01			cable assembly	
ITEH	GTY	PART HUMEER	DESCRIPTION	REF. desig. and remarks
\dagger	1.	36-78LBWKIK	IK POTENTIOMETER	
				EECKMAH, 33138
2	1.	17-22-01-2021	2 PIN COHNECTOR	
				MOLEX, 27264
3	2.	17-03-50-0114	CRIMP TERMIHAL	
				MÜLEX,27264

***** END UF LIST****

AS210-04 DIGITAL DELAY
GENERATOR MODULE

AS210-04
 DIGITAL DELAY GENERATOR MODULE

Abstract

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording and/or otherwise without the prior written permission of ARGOSystems, Inc. This manual may not be lent, resold, hired out or otherwise disposed of by way of trade in any form of binding or cover other than that in which it is published, without the prior consent of ARGOSystems, Inc.

TABLE OF CONTENTS

Chapter Title Page
v
Preface
1 gENERAL INFORMATION 1-1
1-1 Introduction 1-1
1-2 Physical and Electrical Description 1-1
2 INSTALLATION 2-1
2-1 Introduction 2-1
3 OPERATION 3-1
3-1 Introduction 3-1
3-2 Controls and Connectors 3-1
3-3 Operating Instructions 3-1
4 THEORY OF OPERATION 4-1
4-1 Introduction 4-1
4-2 Clock Circuits 4-1
4-3 Data Interfacing Circuits 4-3
4-4 Reference Pulse and Delayed Pulse Generation Circuits 4-3
4-5 Self-Test Circuits 4-5
5 MAINTENANCE AND CALIBRATION 5-1
5-1 Introduction 5-1
SECTION I
5-2 Preventive Maintenance 5-2
SECTION II
5-3 Performance Testing 5-3
5-4 AS210-04 Time Interval Performance Test 5-3
5-5 Test Procedure 5-4
5-6 AS210-04 Reference and Delayed Output Pulsewidths Performance Tests 5-4
5-7 Test Procedure 5-7

TABLE OF CONTENTS (Continued)

Chapter
Title Page
SECTION III
5-8 Calibration/Alignment Procedure 5-9
5-9 Access to AS210-04 Digital Delay Generator Module 5-9
5-10 PLO Alignment Procedure 5-11
5-11 AS210 04 Reference and Delayed Output Pulsewidth Alignment Procedure 5-12
SECTION IV
5-12 Troubleshooting Procedures 5-13ILLUSTRATED PARTS LIST6-1
6-1 Introduction 6-1
6-2 Manufacturer's Code List 6-16
Figure Title
1.1 AS210-04 Digital Delay Generator 1-2
3.1 AS210-04 Front Panel Controls and Connectors 3-2
4.1 Data Interface and Clock Circuits 4-2
4.2 Reference and Delay Pulse Generator Circuit Diagram and Timing Diagram 4-4
4.3 Self-Test Circuit 4-6
5.1 Test Configuration for Time Interval Performance Test of the AS210-04 $5-5$
5.2 Test Configuration for Reference and Delayed Output Pulsewidth Performance Test of the AS210-04 5-8
5.3 Flow Diagram of the Calibration/Alignment Procedure for the AS210-04 Digital Delay Generator 5-10
5.4 AS210-04 Phase-Locked Oscillator and Program Control Assembly, A1, Schematic Diagram 5-15
5.5 AS210-04 Processing and Output Circuits Assembly, A2, Schematic Diagram 5-16
6.1 AS210-04 Digital Delay Generator 6-4
6.2 AS210-04 Digital Delay Generator Assembly, A1 6-9
6.3 AS210-04 Digital Delay Generator Assembly, A2 6-13

LIST OF TABLES

Table Title Page
1-1 AS210-04 EQUIPMENT SPECIFICATION 1-3
3-1 AS210-04 FRONT PANEL CONTROLS AND CONNECTORS 3-3
5-1 PREVENTIVE MAINTENANCE CHECKS AND SERVICES 5-2
5-2 REQUIRED TEST EQUIPMENT FOR THE TIME INTERVAL PERFORMANCE TEST OF THE AS210-04 5-3
5-3 AS210-04 DIGITAL DELAY GENERATOR SWITCH SETTINGS AND CORRESPONDING TIME INTERVAL TOLERANCE LIMITS 5-6
5-4 REQUIRED TEST EQUIPMENT FOR REFERENCE AND DELAYED OUTPUT PULSEWIDTHS OF THE AS210-04 5-7
5-5
REQUIRED TEST EQUIPMENT FOR THE PLO ALIGNMENT PROCEDURE 5-11
5-6 REQUIRED TEST EQUIPMENT FOR THE AS210-04 REFERENCE AND delayed output pulse width alignment procedure 5-12
5-7 ERROR CODE LISTING 5-135-8
VISUAL INDICATORS 5-14

This manual contains installation, operation and maintenance instructions for the AS210-04 Digital Delay Generator. The data contained herein is arranged as follows:

Chapter 1 General Information
Chapter 2 Installation
Chapter 3 Operation
Chapter 4 Theory of Operation
Chapter 5 Maintenance and Calibration
Chapter 6 Illustrated Parts List

Reference Publications

AS210A-PM Portable Mainframe Operation and Maintenance Manual
AS210RM, LM Mainframe Operation and Maintenance Manual
AS210-01A Module Controller Operation and Maintenance Manual
AS210-02 Frequency Comparator Operation and Maintenance Manual
AS210-03 Frequency Generator Operation and Maintenance Manual
AS210-05 Standby Battery Operation and Maintenance Manual
AS210-06 Microwave Generator Operation and Maintenance Manual
AS210-08 Distribution Amplifier Operation and Maintenance Manual
AS210-20 Time Clock Operation and Maintenance Manual

CHAPTER 1
GENERAL INFORMATION

1-1 INFORMATION

The AS210-04 Digital Delay Generator illustrated in Figure 1.1 is designed for installation in the ARGOSystems AS210 Electronic Frequency Counter and Frequency Standard Calibration System Mainframe. The Digital Delay Generator provides a means for generating a selectable, precise delay time between a reference pulse train and delayed pulse train. The reference pulses, delayed pulses and the time interval between them are derived from the Rubidium Frequency Standard in the Mainframe. The unit is programmable through an IEEE-488 interface located in the Module Controller. One application of the Digital Delay Generator is determination of performance characteristics of the time interval function of electronic counters.

1-2 PHYSICAL AND ELECTRICAL DESCRIPTION

The Digital Delay Generator consists of two circuit card assemblies and a front panel mounted in a modular type frame. Controls and connectors are on the front panel. Table 1-1 is an electrical specification for the AS210-04 Digital Delay Generator. Functionally the unit accepts a standard frequency input, converts the frequency and splits the signal into two channels, reference and delayed. The Pulse Repetition Frequency (PRF) of the pulse trains and the delay interval can be manually varied by an operator or controlled by a computer through the IEEE-488 bus.

Figure 1.1 AS210-04 Digital Delay Generator

Table 1-1

AS210-04 EQUIPMENT SPECIFICATION

delay characteristics between reference pulse and delayed pulse

RANGE 0-999.99 microseconds

RESOLUTION 10 nanoseconds

UNCERTAINTY . 01 - . 09 microseconds delay ± 1 nanosecond
.1 - . 99 microseconds delay ± 2 nanoseconds
1.0 - 999.99 microseconds delay ± 3 nanoseconds

REPEATABILITY
.01 - . 99 microseconds ± 0.2 nanoseconds maximum
1.0-999.9 microseconds ± 0.6 nanoseconds maximum

OUTPUT PULSE CHARACTERISTICS WITH A 50 OHM TERMINATION

BNC connectors
OUTPUTS AVAILABLE
TRANSITION TIMES
PULSE WIDTH
Referenced and delayed pulses; BNC connectors
Less than or equal to 5 nanoseconds
10 microseconds nominal
LEVEL $\quad-2.5$ to +2.5 volts (5 VPP minimum)
PULSE REPETITION RATES $\quad 1,10,100,1 \mathrm{~K}$ or 10 KHz selectable

PHYSICAL CHARACTERISTICS

OPERATING TEMPERATURE RANGE 0 to $40^{\circ} \mathrm{C}$

POWER Supplied by AS210 mainframe

SIZE
Single width plug-in

WEIGHT
2.25 pounds
\mathbf{I}

I
-

1 I
 -$-$ -
(18 d

CHAPTER 2
 INSTALLATION

2-1 INTRODUCTION

The AS210-04 Digital Delay Generator module plugs into the AS210 Mainframe. The module is electrically connected through the rear connector and mechanically retained via a front panel locking bar on the mainframe. Power and singal interface is provided through the mainframe.

NOTE 1: Because of the high retention force of the rear card edge connector, it may be necessary to pull on the RATE control at the same time as the release mechanism is pulled to remove the Digital Delay Generator module from the mainframe.

NOTE 2: The power in the AS210 Mainframe must be turned off when inserting or removing the Digital Delay Generator.

CAUTION
AS210 series plug-ins will not work in Tektronix TM500 series mainframes. Severe damage will result if operation in this mode is attempted.

The signals are output through two BNC connectors. The cables should be equal length to avoid delay errors. There is a delay of approximately 1.5 nanoseconds/foot in RG58/U cable.

CHAPTER 3

OPERATION

3-1 INTRODUCTION

Operator interface with the AS210-04 Digital Delay Generator is provided through two controls and two connectors on the front panel of the module. The CPU interface is transparent to the operator. This chapter contains a front panel illustration keyed to a table explaining the function of the controls and connectors. The operating procedures provide applications and instructions for use of the Digital Delay Generator.

3-2 CONTROLS AND CONNECTORS

Figure 3.1 is a front panel photograph of the Digital Delay Generator with index numbers keyed to Table 3-1.

3-3 OPERATING INSTRUCTIONS

The AS210-04 is connected via 50 ohm cable with BNC connectors. See installation notes. Select the desired delay from 000.00 to 999.99 microseconds with the thumbwheel switch. Select the desired Pulse Repetition Frequency (PRF) of both outputs with the RATE switch.

NOTES
Maximum delay 98 microseconds on 10 K Hz range
Maximum delay 998 microseconds on 1 K Hz range
Fast rise-time may cause ringing on unterminated cable

Figure 3.1 AS210-04 Front Panel Controls and Connectors

TABLE 3-1
AS210-04 FRONT PANEL CONTROLS AND CONNECTORS

INDEX NO. FIGURE 3-1	PANEL MARKING	FUNCTION
1	DELAY (microseconds)	Thumbwheel switch selects delay in microseconds between the REFERENCE pulse and DELAYED pulse outputs.
2	RATE (Hz)	Selects the pulse repetition frequency (PRF) of the output pulse signals.
3	delayed	The delayed pulse output. The PRF is selected by item 2, delay selected by item 1.
4	REFERENCE	The reference pulse output. The PRF is selected by item 2.
5	None	Release mechanism

CHAPTER 4
THEORY OF OPERATION

4-1 INTRODUCTION

This chapter provides an analysis of the circuits used in the Digital Delay Generator. The circuit descriptions are keyed to block diagrams, timing diagrams, and the schematic diagrams of the Maintenance chapter. Details of common circuits (power supplies, etc.) are not included in this description.

The main circuitry of the AS210-04 is contained on two circuit card assemblies designated A1 and A2. The Digital Delay Generator module receives a 10 MHz standard input signal from the Rubidium Frequency Standard on the AS210 Mainframe and produces two pulsed signal outputs. The PRF of the pulsed signals and the time delay between them are selectable. The AS210-04 is used in conjunction with the AS210-01 Module Controller which provides the CPU control and interface.

4-2 CLOCK CIRCUITS

The AS210-04 has a 100 MHz clock which is used for the timing and generation of the dual pulse trains (Figure 4.1). The 10 MHz standard input is divided by two at AlUl2 to produce a 5 MHz reference input for phase detector A1U13. The phase detector output goes to loop amplifier/filter AlU14 providing the tuning voltage for the 100 MHz Voltage-Controlled Oscillator (VCO) AlQ2 and AlQ3. The 100 MHz signal is divided by 20 at AlU19 and AlU2O then applied to the variable input of AlU13. The VCO is thus phase locked to the 10 MHz frequency standard. One output of the VCO is sent to driver AlU21 which translates the signal to ECL levels needed for the delay producing circuits. The second output of the VCO is divided by 10 at A1U20,

Figure 4.1 Data Interface and Clock Circuits
converted to TTL at AlQ4 and applied to the frequency-division circuit consisting of A1U16, A1U17, A1U18, and A1U19. Signals of $1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}, 1$ KHz and 10 KHz are produced by this division circuit and applied to PRF select multiplexer AlU15. The multiplexer is addressed by the CPU which scans bidirectional multiplexer AlU2 and AlU3 ten times per second to determine the status of the front panel RATE and Delay switches. The 100 MHz clock, 10 KHz clock and one of the five PPS outputs (selected via AlU15) are sent to the timing and reference circuits.

4-3 DATA INTERFACING CIRCUITS

The RATE switch and DELAY thumbwheel switches are connected to the CPU data bus via multiplexers A2U12, A2U14, A2U25-U27 and A2U37-U39 (Figure 4.1). The 8-bit data bus (D11A-D13B) connects to a bidirectional mul.tiplexer A1U2 and A1U3 which is addressed by the CPU (address bits A7, A15) and controlled by the $\overline{R D}$ signal from the CPU. Counters A2U31-U34 and A2U20 (Figure 4.2) are loaded with data from the DELAY thumbwheel as follows. The BCD thumbwheel data is applied to the multiplexer addressed by the CPU as described above. This data is sent over the data bus and returned under program control to be latched into AlU7, AlU9 and AlU11 (Figure 4.1). When these latches are appropriately addressed by the CPU their data is loaded into the counters.

4-4
 REFERENCE PULSE AND DELAYED PULSE GENERATION CIRCUITS

The product of the Digital Delay Generator is two pulse trains at a selected PRF (RATE) and selected time delay between pulse trains. Refer to Figure 4.2 throughout the following discussion. The significant signals, developed by previously described circuits, are the 100 MHz phase locked clock signal, the selected rate (PPS) and the delay data dialed by the operator into the thumbwheels and returned to the unit via the CPU data bus. Four bits of the delay data (PA1-PD1) are loaded into $\div 10$ counter A2U20. This is a high speed ECL counter and the data is converted to ECL levels prior to loading in A2U20. The 100 MHz clock signal is al so converted to ECL and applied to the counter's clock input. The $\overline{\mathrm{QO}}$ and $\overline{\mathrm{Q} 8}$ output of A2U20 are

Figure 4.2 Reference and Delay Pulse Generator Circuit Diagram and Timing Diagram
applied to gate A2U18A. The 100 MHz clock is divided by 10 to 10 MHz by A2U20. The 10 MHz pulses are stretched to 25 nanoseconds by one-shot A2U19 and applied to the clock input of ripple counters A2U31-U34. The counters are preloaded with the remaining lines of the data bus (PA2-PD5) containing delay data. As each of these counters reaches zero from its preloaded number, the M/N (minimum/maximum) output is applied to gate A2U30. The output of A2U30 goes low when counters A2U31-U34 have reached the end of their count and is applied to A2U18A with $\overline{Q O}$ and $\overline{Q 8}$ from A2U20. The output of A2U18A (EOC) is applied to the K input of A2U2B. The PPS signal is synchronized with the 100 MHz clock by A2U3A. The output of A2U3A (Q1) is applied to the D input of $A 2 U 3 B$ with the 100 MHz clock at its CLK input. Signal Q2 is therefore delayed from Q1 by 1 clock pulse. Q2, the 100 MHz clock, and $\overline{\mathrm{Q} 1}$ are applied to gate A2U18B which goes high 1 clock period behind the PPS signal. The false output of $A 2 U 18 B$ is applied to the K input of A2U2A while the true output is applied to the J input of both A2U2A and A2U2B. The 100 MHz clock drives both $A 2 U 2 A$ and $A 2 U 2 B$ while the EOC signal is applied to the K input of $A 2 U 2 B$. The Q3 signal from the output of A2U2A is delayed from signal Q2 by one 10 nanosecond clock period. The Q output of $A 2 U 2 B$ is the load enable (EN) for counters A2U31-U34 while the \bar{Q} output enables counter A2U20. A2U16A and U16B are both clocked by the 100 MHz clock signal. Q3 is the D input of A2U16A and the EOC signal is the D input of $A 2 U 16 B$. The EOC pulse is one clock period wide (10 nanoseconds) and is delayed N clock pulses from Q3. The output of A2U16A (Q4) is a reference pulse train synchronized with the 100 MHz clock while the output of A 2 U 16 B (Q5) is a pulse train delayed by the number of clock periods represented in the length of the EN pulse. Both pulse trains are puise stretched to 10 microseconds by A2U15 and A2U17. A2U28 and A2U29 are current drivers for both outputs.

4-5 SELF-TEST CIRCUITS

The self-test circuits are illustrated in Figure 4.3. The inputs to this circuit are the 100 MHz clock, reference pulse train, delayed pulse train and a 10 KHz clock developed in the timing circuits. The purpose of the self-test function is to ensure that the actual pulse delay equals the

Figure 4.3 Self-Test Circuit
dialed-in thumbwheel setting. Reference pulses from A2U15 and delayed pulses from A2U17 are applied to the D input of A2U7B and A2U7A respectively. The 100 MHz clock signal is applied to the clock inputs of both flip-flops simultaneously. The DP output from A2U7B is thus delayed from the RP output of A2U7A by a time equal to the programmed delay time between the two pulse trains. When these two signals (RP and DP) are input to gate A2U15 with the 100 MHz clock the output is a pulse (EN) whose duration equals the time delay Td. The EN signal is applied to the enable input of pulse counter A2U8 which is driven by the 100 MHz clock. The output of A2U8 represents the number of 100 MHz pulses counted during the delay period Td. This count, accumulated by A2U8, A2U11 and A2U13, goes to thumbwheel multiplexers A2U12, A2U14, A2U25, A2U26, A2U27, A2U37, A2U38, A2U39 where it is scanned by the CPU. The CPU is also scanning the thumbwheel settings as part of the normal program and makes a comparison between the two readings. An error determination is displayed as a fault on the module controller's display unit.

CHAPTER 5

MAINTENANCE AND CALIBRATION

5-1

INTRODUCTION

The purpose of this chapter is to provide maintenance and calibration data for the AS210-04 Digital Delay Generator. Section I covers routine preventative maintenance procedures. Section II outlines performance tests for the Digital Delay Generator. Section III contains the calibration/alignment procedures for the AS210-04 module, and Section IV describes troubleshooting data. Figures 5.4 and 5.5 are the schematic diagrams for the Digital Delay Generator. The two truth tables on Figure 5.5 are for the Thumbwheel switch and RATE switch. For example, if the thumbwheel switch is set at 300.00 microseconds and the RATE switch is set at 1 KHz then input lines A5 on A2U27, B5 on A2U37, RA on A2U12, RB on A2U14, and RC on A2U26 will float high. All other input lines will be low. Please contact the factory for any assistance required in the maintenance or servicing of the AS210-04.

SECTION I

5-2 PREVENTIVE MAINTENANCE

Table 5-1 lists preventive maintenance checks and services which should be performed regularly.

Table 5-1
PREVENTIVE MAINTENANCE CHECKS AND SERVICES

ITEM	PROCEDURES
CABLES	Visually inspect cables for strained, cut frayed, or other
CLEANLINESS	Make sure the exterior surfaces of the unit are clean. If necessary, clean exterior surfacs as follows:
	A. Remove the dust and loose dirt with a clean soft cloth. B. Remove dust or dirt from plugs and jacks with a brush.
	WARNING
	Use only warm soapy water for cleaning all plastic parts. Many solvents will cause the plastic to become brittle.
CORROSION	Make sure exterior surfaces of unit are free of rust and corrosion.
PRESERVATION	Inspect exterior surfaces of the unit for chipped paint or corrosion. If necessary, spot-paint surfaces as follows:
	A. Remove rust and corrosion from metal surfaces by lightly sanding them with sandpaper.
	B. Brush two coats of paint on base metal to protect it from further corrosion.

SECTION II

5-3 PERFORMANCE TESTING

This section describes the procedure to test the AS210-04 Digital Delay Generator to assure proper performance of the instrument. The AS210-04 must be used in conjunction with the AS210-01 Module Controller since the CPU in the AS210-01 monitors the controls and output of the AS210-04. The AS210-04 Digital Delay Generator will not operate without the AS210-01 Module Controller installed. If the AS210-04 fails any of the performance tests, please see Section III, Calibration/Alignment procedures, and/or Section IV, Troubleshooting procedures in this chapter.

5-4 AS210-04 TIME INTERVAL PERFORMANCE TEST

The following is a procedure for testing the time interval between the reference and delayed output pulse trains of the AS210-04 Digital Delay Generator. Table 5-2 contains the required equipment to perform this test.

Table 5-2
REQUIRED TEST EQUIPMENT FOR THE TIME INTERVAL PERFORMANCE TEST OF THE AS210-04

ITEM	RECOMMENDED TEST EQUIPMENT
ELECTRONIC COUNTER	Hewlett-Packard 545A
FREQUENCY STANDARD	
COAXIAL CABLE (3 required)	Hewlett-Packard 5061A or 5062C Opt 01

A. Ensure that power is disconnected from the AS210 system before beginning this procedure.
B. Connect the equipment as indicated in Figure 5.1 and apply power to the AS210. The Rubidium Frequency Standard in the AS210 system will require 20 minutes warm-up time to reach the specified frequency accuracy.
C. Set the electronic counter controls to measure time interval, with 50 Ohm input impedance and external time base.
D. Set the AS210-04 Digital Delay Generator to each position listed in Table 5-3. At each setting, verify that the electronic counter indication is within the tolerance limits listed. If any of the indications fall out of the limits for acceptable performance, please see Section III, Calibration/ Alignment Procedures, and/or Section IV, Troubleshooting Procedures.
E. Disconnect the frequency counter from the AS210-04.

AS210-04 REFERENCE AND DELAYED OUTPUT PULSEWIDTHS PERFORMANCE TESTS

The following is a procedure for testing the reference and delayed output pulse widths of the AS210-04 Digital Delay Generator. Table 5-4 on page 5-7 contains the required equipment for this performance test.

Figure 5.1 Test Configuration for Time Interval Performance Test of the AS210-04

TABLE 5-3
AS210-04 DIGITAL DELAY GENERATOR SWITCH SETTINGS AND CORRESPONDING TIME INTERVAL TOLERANCE LIMITS

DELAY SWITCHES (microseconds)	RATE OUTPUTS SWITCH (Hz)	ELECTRONIC COUNTER TOLERANCE LIMITS
000.02	10 K	19 to 21 nanoseconds
000.13	10 K	128 to 132 nanoseconds
004.44	10 K	4.437 to 4.443 microseconds
055.55	10 K	55.547 to 55.553 microseconds
066.66	1 K	66.657 to 66.663 microseconds
077.77	1 K	77.767 to 77.773 microseconds
088.88	1 K	88.877 to 88.883 microseconds
111.11	1 K	111.107 to 111.113 microseconds
999.99	100	999.987 to 999.993 microseconds
44.44	100	44.437 to 44.443 microseconds
33.33	100	33.327 to 3.333 microseconds
222.22	100	222.217 to 222.223 microseconds
222.22	10	222.217 to 222.223 microseconds
22.22	10	22.217 to 22.233 microseconds
111.11	10	111.107 to 111.113 microseconds
900.00	10	899.987 to 900.003 microseconds
999.99	1	999.987 to 999.993 microseconds
987.65	1	987.647 to 987.603 microseconds
876.10	1	876.097 to 876.103 microseconds
050.10	1	50.097 to 50.103 microseconds

TABLE 5-4

REQUIRED TEST EQUIPMENT FOR REFERENCE AND DELAYED OUTPUT PULSEWIDTHS OF THE AS210-04

ITEM	RECOMMENDED TEST EQUIPMENT
OSCILLOSCOPE WITH PROBES	Tektronix 465 or Equivalent
COAXIAL CABLE (2 required)	3 Foot Long, 50 Ohm, BNC

5-7 TEST PROCEDURE

A. Ensure that power is disconnected from the AS210 system before beginning this procedure.
B. Connect the equipment as indicated in Figure 5.2 and apply power. The Rubidium Frequency Standard in the AS210 system will require 20 minutes warm-up time to reach the specified frequency accuracy.
C. With an oscilloscope, monitor the reference and delayed output pulse trains at the front panel of the AS210-04. Both the reference and delayed output pulses should be between 9 and 11 microseconds wide. If the output pulses are out of this tolerance then consult Section III, Calibration/Alignment Procedures, and/or Section IV, Troubleshooting Procedures.
D. Disconnect the oscilloscope from the AS210-04 output connectors.
Figure 5.2 Test Configuration for Reference and Delayed Output Pulsewidth Performance

5-8 CALIBRATION/ALIGNMENT PROCEDURE
WARNING
The following Calibration/Alignment Procedures (Chapter 5, Section III) and Troubleshooting Procedures (Chapter 5, Section IV) are for use by qualified personnel only. To avoid personal injury, do not perform any servicing other than that of Routine Maintenance (Chapter 5, Section I) and Performance Testing (Chapter 5, Section II) unless you are qualified to do so.

Figure 5.3 is a flow diagram of the Calibration/Alignment Procedure for the AS210-04 Digital Delay Generator. Use this flow diagram with the theory of operation in Chapter 4, the text in this chapter, and the illustrated parts lists in Chapter 6 . The AS210 internal frequency standard calibration data, contained in the AS210 mainframe operation and maintenance manual, is also referenced in this flow diagram. Please note that it is not necessary to diassemble the AS210 system to determine if calibration/alignment is needed. For any assistance needed in performing this calibration/alignment procedure, please contact the factory.

5-9 ACCESS TO AS210-04 DIGITAL DELAY GENERATOR MODULE

Please reference the AS210 mainframe manual for the disassembly procedure of the AS210 system to allow access to the AS210-04 Digital Delay Generator module. Access to the module circuitry itself is gained by removing the two metal side covers with a small straight-blade screwdriver. Place the module on one of its sides so that one cover is facing up. Starting with the end toward the edge connector, insert the screwdriver into one of the slots where the cover mates with the module chassis and pry the cover up. It will be necessary to move along the slot toward the front panel of the module

Figure 5.3 Flow Diagram of the Calibration/Alignment Procedure for the AS210-04 Digital Delay Generator
and repeat the prying action to loosen the side of the cover from the module. Repeat this technique to free the other side of the cover from the chassis. Set the free cover clear of the module and flip the module over so that the second cover is now facing up. Repeat the above procedure to free this cover.

5-10 PLO ALIGNMENT PROCEDURE

The following is the alignment procedure for the phase-locked oscillator (PLO) in the AS210-04 Digital Delay Generator. Table 5-5 contains the required test equipment for this alignment procedure.

TABLE 5-5
REQUIRED TEST EQUIPMENT FOR THE PLO ALIGNMENT PROCEDURE

ITEM	RECOMMENDED TEST EQUIPMENT
OSCILLOSCOPE WITH PROBES	Tektronix 465 or Equivalent
ELECTRONIC COUNTER	Hewlett-Packard 5345A COAXIAL CABLE

A. Obtain access to the AS210-04 module circuits by referencing paragraph 5-9 in this chapter.
B. Using the oscilloscope monitor the voltage level on pin six of U14 located on assembly A1 (117241).
C. Adjust the variable capacitor AlC3 in a clock-wise direction until a level of $-4 V D C$ is obtained.

The AS210-04 Digital Delay Generator output frequencies should now be aligned. To confirm that the digital delay generator is operating
properly, reference Section II, Performance Testing of the AS210-04 contained in this chapter.

5-11 AS210-04 REFERENCE AND DELAYED OUTPUT PULSE WIDTH ALIGNMENT PROCEDURE

The following is the alignment procedure for the referenced and delayed output pulse widths of the AS210-04. Table 5-6 contains the required test equipment for the alignment procedure.

Table 5-6
REQUIRED TEST EQUIPMENT FOR THE AS210-04 REFERENCE AND DELAYED OUTPUT PULSE WIDTH ALIGNMENT PROCEDURE

ITEM	RECOMMENDED TEST EQUIPMENT
OSCILLOSOPE WITH PROBES	Tektronix 465 or Equivalent
COAXIAL CABLE (2 Required)	3 Foot Long, 50 Ohm, BNC

A. Obtain access to the AS210-04 Digital Delay Generator module circuits by referencing paragraph 5-9 in this chapter.
B. Monitor the reference and delayed output pulse widths of the AS210-04 with the oscilloscope as in Figure 5.2.
C. Adjust R17 and R23 for the reference and delayed nominal output pulse widths of 10 microseconds.

The AS210-04 Digital Delay Generator output levels should now be aligned. To confirm that the Digital Delay Generator is operating properly, reference Section II, Performance Testing of the AS210-04, contained in this chapter.

5-12 TROUBLESHOOTING PROCEDURES

Troubleshooting of the Digital Delay Generator is facilitated by a combination of error codes displayed on the module controller display and LED indicators on the circuit card assembly, A1. The circuit cards A1 and A2 are illustrated in Figure 6.1. Table 5-7 correlates the error code, displayed on the module controller when a fault occurs, to the malfunction. An explanation of the problem is provided with possible solutions. Table 5-8 is a list of visual indicators on circuit card Al and the meaning of their indications. For further assistance, please contact the factory.

Table 5-7
ERROR CODE LISTING

ERROR CODE	PROBLEM	RECOMMENDED SOLUTION
4-00	On 10 KHz setting delay >99 microseconds or on 1 KHz settīng delay ≥ 999 microseconds	Reduce delay setting or repetition rate.
$\begin{aligned} & 4-20 \text { to } \\ & 4-22 \end{aligned}$	Self-test delay error $\begin{aligned} & 20=1 \mathrm{~Hz} \\ & 21=10 \mathrm{~Hz} \\ & 22=100 \mathrm{~Hz} \end{aligned}$	Check delay generator circuit.
$\begin{aligned} & 4-10 \text { to } \\ & 4-12 \end{aligned}$	Self-test, PRR not equal to 1 pps , 10 pps or 100.	Check repetition rate circuit (see Table 5-2).
4-30	Self-test delayed pulse not occurring.	Self-test circuit failed. Repetition rate generator failed.

Table 5-8
VISUAL INDICATORS

INDICATOR		
$\begin{gathered} \text { A1CR1, CR2 } \\ \text { OFF } \end{gathered}$	10 MHz Reference Signal Failure	Check 10 MHz Reference Input, AlQ1, U12.
$\begin{gathered} \text { AICR3, CR4 } \\ \text { OFF } \end{gathered}$	Oscillator	Check A1Q2, Q3, U20, U21, Q4, U19 or U12.
$\begin{aligned} & \text { A1CR5 } \\ & \text { ON } \end{aligned}$	100 MHz Oscillator in Unlock Condition	If CR1-CR4 are OK, check A1U13, U14.

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Figure 5.4 Digital Delay Generator, Phase Locked Oscillator and Program Control (A1)

- Schematic Diagram

CHAPTER 6
 ILLUSTRATED PARTS LIST

6-1 INTRODUCTION

This chapter contains an illustrated parts list for the Digital Delay Generator Module. The assembly numbers and assembly title are listed at the top of the parts lists. The parts lists are divided into six columns and arranged in the following order:

Column 1 - Item Number
Column 2 - Quantity per assembly.
Column 3 - Manufacturer's Code
Column 4 - Part Number
Column 5 - Description
Column 6 - Reference Designation

ASSEMBLY NUMBER 117171-01 - DIGITAL DELAY GENERATOR AS210-04

ITEM	QTY	MANUFACTURER'S CODE	PART NUMBER	DESCRIPTION	REF. DESIG.
1	1	33472	117240-01	Digital Delay Generator Assembly	A1
2	1	33472	117245-01	Digital Delay Generator Assembly	A2
3	0	33472	117326	Frame Section Modification	
4	1	33472	117350-03	Cable Assembly Ribbon, 50 Wire	
5	1	33472	117357-02	Cable Assembly ${ }^{\text {Coax }}$	
6	4	06540	8225-SS-0632	Standoff, 6-32×1\&5/16" Threaded	
7	8	81349	MS51957-27	Screw, PNH 6-32 \times 5/16	
8	8	81349	NAS620-C6	Reduced OD Flat Washer \#6	
9	8	81349	MS35338-136	Split Lock Washer \#6	
10	1	33472	117183-01	Panel, Lexan	
11	1	33472	117183-02	Subpanel, Plastic	
12	1	33472	117183-03	Panel, Rear	
13	1	95146	PKG-50B 1/4	Knob, Black	
14	1	33472	117347-01	Harness Assembly	
15	1	33472	117356-02	Cable, Coaxial	
16	1	33472	117356-03	Cable, Coaxial	
17	1	80009	366-1690-10	Latch Pull	
18	1	80009	105-0718-01	Latch	
19	1	80009	426-0724-00	Bottom	
20	2	80009	337-1399-00	Side Cover	

ASSEMBLY NUMBER 117171-01 - DIGITAL DELAY GENERATOR AS210-04 (Continued)

ITEM	QTY	MANUFACTURER'S CODE	PART NUMBER	DESCRIPTION	REF. DESIG.
21	1	80009	214-1061-00	Tension Spring	
22	1	80009	426-0725-00	Top	
23	2	80009	386-3657-01	Guide Pin	
24	1	81349	00000	Screw FLH STL Sheet Metal \#2X1/4	
25	4	81349	MS24693-C26	Screw 6-32×3/8 FLH	
26	4	81349	00000	Screw PNH STL Sheet Metal $\# 6 \times 3 / 8$	

Figure 6.1 AS210-04 Digital Delay Generator

ASSEMBLY NUMBER 117240-01 - DIGITAL DELAY GENERATOR A1

ITEM	QTY	MANUFACTURER'S CODE	PART NUMBER	DESCRIPTION	REF. DESIG.
1	1	33472	117243	PWB	
2	0	33472	117241	Schematic	
3	0	33472	117240	Assembly Drawing	
4	1	81349	CK05B $\times 103 \mathrm{~K}$. 01 UFD 10\% Ceramic Capacitor	C9
5	17	81349	CK05BX104K	```.1 UFD 10% Ceramic Capacitor```	$\begin{aligned} & \mathrm{C} 10, \mathrm{C} 12, \mathrm{C} 14, \\ & \mathrm{C} 20-27, \\ & \mathrm{C} 30-32, \\ & \mathrm{C} 34-36 \end{aligned}$
6	2	51642	$\begin{aligned} & 300-50-601- \\ & 105 \mathrm{M} \end{aligned}$	1 UFD 20\% Ceramic Capacitor	C13,C18
7	2	81349	CK05BX471K	470 PFD 10\% Ceramic Capacitor	C6, $\mathrm{C7}$
8	1	81349	CK05BX473K	. 047 UFD 10\% Ceramic Capacitor	C16
9	1	81349	CK05B $\times 102 \mathrm{~K}$. 001 UFD 10\% Ceramic Capacitor	C33
10	1	81349	CK05BX472K	. 0047 UFD 10\% Ceramic Capacitor	C37
11	3	81349	CK05B $\times 101 \mathrm{~K}$	100 PF 10\% Ceramic Capacitor	C38,C39,C40
12	2	81349	$\begin{aligned} & 100-100- \\ & \text { COG689J } \end{aligned}$	6.8 PFD 5\% Ceramic Capacitor	C4, C5
13	1	72982	$\begin{aligned} & 513-010-A 2- \\ & 10 \end{aligned}$	2-10 PFD Variable Capacitor	C3
14	3	56289	CSR13G106KL	10 UFD, 50V, Electrolytic Cap	C8,C15,C19
15	4	15849	20108-1	Terminal	
16	2	04713	MV2203	Tuning Diode	CR6,CR7

ASSEMBLY NUMBER 117240-01 ~ DIGITAL DELAY GENERATOR A1 (Continued)

ITEM	QTY	MANUFACTURER'S CODE	PART NUMBER	DESCRIPTION	REF. DESIG.
17	5	50434	5082-4487	Light Emitting Diode	CR1-CR5
18	1	53387	3433-2202	50 Pin PC Mount Male Header	J3
19	1	98291	51-051-0000	Snap On Conhex Connector	J4
20	2	99800	1025-48	15 UHY Molded RF Choke	L1, L4
21	1	33472	117305-05	Center Tapped Inductor	L2
22	1	02114	VK200-20/4B	Wide Band Choke	L3
23	2	04713	2N5179	NPN Transistor	Q2, Q3
24	1	27014	2N2222A	NPN Transistor	Q1
25	1	04713	MPS 3639	PNP Transitor	Q4
26	2	81349	RCR07G151JS	150 ohm 5\% 1/4W Carbon Comp	R6,R18
27	4	81349	RCR07G102JS	1K 5\% 1/4W Carbon Comp	$\begin{aligned} & R 20, R 22, R 25, \\ & R 36 \end{aligned}$
28	1	81349	RCR07G103JS	10K 5\% 1/4W Carbon Comp	R24
29	1	81349	RCR07G182JS	1.8K 5\% 1/4W Carbon Comp	R19
30	2	81349	RCR07G221JS	2205% 1/4W Carbon Comp	R19
31	3	81349	RCR07G222JS	2.2K 5\% 1/4W Carbon Comp	R5,R35
32	2	81349	RCR07G223JS	22K 5\% 1/4W Carbon Comp	R27,R28,R30
33	1	81349	RCR07G390JS	39 ohm 5\% 1/4W Carbon Comp	R15
34	1	81349	RCR07G392JS	3.9K 5\% 1/4W Carbon Comp	R13
35	4	81349	RCR07G471JS	470 5\% 1/4W Carbon Comp	$\begin{aligned} & \text { R1,R8-10, } \\ & \text { R12,R23 } \end{aligned}$
36	3	81349	RCR07G472JS	4.7K 5\% 1/4W Carbon Comp	R21,R26,R29
37	3	81349	RCR07G511JS	510 5\% 1/4W Carbon Comp	R3,R4,R7

ASSEMBLY NUMBER 117240-01 - DIGITAL DELAY GENERATOR A1 (Continued)

ITEM	QTY	MANUFACTURER'S CODE	PART NUMBER	DESCRIPTION	REF. DESIG.
38	2	81349	RCR07G821JS	820 ohm 5\% 1/4W Carbon Comp	R16,R17,
39	1	81349	RCR07G270JS	27 ohm 5\% 1/4W Carbon Comp	R31
40	1	81349	RCR07G104JS	100K ohm 5\% 1/4W Carbon Comp	R33
41	1	81349	RCR07G121JS	120 ohm 5\% 1/4W Carbon Comp	R34
42	1	81349	RCR42G750JS	75 ohm 5\% 2W Carbon Comp	R32
43	1	01295	74LS00N	Quad 2 Input NAND Gate	U5
44	2	01295	74LS04N	Hex Inverter	U1, U4
45	3	01295	74LS30N	Dual 6 Input NAND Gate	U6,U8,U10
46	1	01295	74LS112N	Dual JK	U12
47	1	01295	74LS151N	Multiplexer	415
48	3	01295	74LS273N	Octal D Flip Flop	U7,U9,U11
49	1	01295	74LS290N	Decade Counter	U19
50	3	01295	74LS390N	Decade Counter	U16, U17, U18
51	1	01295	UA7952CKC	-5.2V Regulator	U24
52	2	34649	P8216	Buss Driver	U2, U3
53	1	04713	MC4044P	Phase Comparator	U13
54	1	04713	MC10102P	Quad 2 Input NAND Gate	U21
55	1	04713	MC10138P	Dual JK	U20
56	1	27014	LM320MP-12	-12V Regulator	U22
57	1	27014	LM342P-12	+12V Regulator	U23
58	1	27014	LM741CN	Op Amp	U14

ASSEMBLY NUMBER 117240~01 - DIGITAL DELAY GENERATOR A1 (Continued)

ITEM	QTY	MANUFACTURER'S CODE	PART NUMBER	DESCRIPTION	REF. DESIG.
59	1	01295	C9308-02	8 Pin Socket	
60	8	01295	C9314-02	14 Pin Socket	
61	9	01295	C9316-02	16 Pin Socket	
62	3	01295	C9320-02	20 Pin Socket	
63	2	56289	$\begin{aligned} & \text { 196D156X- } \\ & \text { 9020K41 } \end{aligned}$	$15 \mathrm{MFD}, 20 \mathrm{~V}, \mathrm{TANT}$	C27,C29
64	2	56289	$\begin{aligned} & \text { 196D156X- } \\ & \text { 9035PE4 } \end{aligned}$	15 MFD, 35V, TANT	C13,C17

Figure 6.2 AS210-04 Digital Delay Generator Assembly, A1

ASSEMBLY NUMBER 117245-01 - DIGITAL DELAY GENERATOR A2

ITEM	QTY	MANUFACTURER'S CODE	PART NUMBER	DESCRIPTION	REF. DESIG.
1	1	33472	117248	PC Board	
2	0	33472	117246	Schematic	
3	0	33472	117245	Assembly Drawing	
4	1	81349	CK05BX102K	. 001 UFD 10\% Ceramic Capacitor	C2
5	10	81349	CK05BX104K	.1UFD 10\% Ceramic Capacitor	$\begin{aligned} & \mathrm{C} 6-\mathrm{C} 10, \mathrm{C} 12, \\ & \mathrm{C} 14, \mathrm{C} 17-\mathrm{C} 25, \\ & \mathrm{C} 28, \mathrm{C} 30 \end{aligned}$
6	2	81349	CK05B $\times 272 \mathrm{~K}$	2700 PFD 10\% Ceramic Capacitor	C3,C4
$\begin{aligned} & 7 \\ & 8 \end{aligned}$	1	81349 81349	$\begin{aligned} & \text { CK05BX100K } \\ & \text { CK05BX471K } \end{aligned}$	10 PFD 10% Ceramic 470 PFD 10\% Ceramic Capacitor	$\begin{aligned} & \mathrm{C5} \\ & \mathrm{Cl} \end{aligned}$
9	2	81349	$\begin{aligned} & 100-100- \\ & \text { CGS } 339 \mathrm{~J} \end{aligned}$	3.3 PFD 5\% Ceramic Capacitor	C31, C32
10	5	56289	$\begin{aligned} & \text { 1960156X- } \\ & \text { 9020KA1 } \end{aligned}$	15 UFD 10\% Solid Tantalum	$\begin{aligned} & \mathrm{C} 15, \mathrm{C} 16, \mathrm{C} 26, \\ & \mathrm{C} 27, \mathrm{C} 29 \end{aligned}$
11	4	04713	1N3064	Diode	CR1, CR4
12	4	15849	20108-1	Terminal	
13	36	09769	2-331272-6	Minipin	
14	1	53387	3433-2202	50 Pin PC Mount Male Header	J3
15	1	27264	22-03-2251	25 Pin Wafer	J2
16	3	98291	51-051-0000	Snap-On Conhex Connector	J1, $44, \mathrm{~J} 5$
17	1	02114	VK200-20/4B	Wide Band Choke	L1
18	7	04713	MPS3639	PNP Transistor	Q1-Q7
19	2	83149	MS51957-4	Screw PNH 2-56 x 5/16	
20	4	81349	NAS620-C2	Reduced OD Flat Washer \#2	
21	2	81349	MS35338-134	Split Lock Washer \#2	
22	2	81349	NAS671-C2	Small Pattern Hex Nut \#2	
23	6	81349	RCR05G820JS	82 ohm 5\% 1/8W Carbon Comparator	$\begin{aligned} & \text { R70,R71, } \\ & \text { R82-R85 } \end{aligned}$

ASSEMBLY NUMBER 117245-01 - DIGITAL DELAY GENERATOR A2 (Continued)

ITEM	QTY	MANUFACTURER'S CODE	PART NUMBER	DESCRIPTION	REF. DESIG.
24	4	81349	RCR05G131JS	130 ohm 5\% 1/8W Carbon Comparator	$\begin{aligned} & \text { R9,R19,R26, } \\ & \text { R27 } \end{aligned}$
25	5	81349	RCR05G151JS	150 ohm 5\% 1/8W Carbon Comparator	$\begin{aligned} & \text { R4,R5,R14, } \\ & \text { R42,R44 } \end{aligned}$
26	8	81349	RCR05G181JS	180 ohm 5\% 1/8W Carbon Comparator	$\begin{aligned} & R 7, R 30, R 32, \\ & \text { R35,R38,R49, } \\ & \text { R61,R72 } \end{aligned}$
27	1	81349	RCR05G221JS	220 ohm 5\% 1/8W Carbon Comparator	R3
28	8	81349	RCR05G271JS	270 ohm 5\% 1/8W Carbon Comparator	$\begin{aligned} & \text { R6,R31,R34, } \\ & \text { R37,R40,R50, } \\ & \text { R63,R73 } \end{aligned}$
29	15	81349	RCR05G301JS	300 ohm 5\% 1/8W Carbon Comparator	$\begin{aligned} & \text { R1,R2,R18, } \\ & \text { R68,R69 } \end{aligned}$
30	11	81349	RCR05G390JS	39 ohm 5\% 1/8W Carbon Comparator	$\begin{aligned} & \text { R13,R20,R21, } \\ & \text { R28,R29,R53, } \\ & \text { R55,R57,R59, } \\ & \text { R62,R80 } \end{aligned}$
31	3	81349	RCR05G471JS	470 ohm 5\% 1/8W Carbon Comparator	R12,R15,R43
32	4	81349	RCR05G472JS	4.7K 5\% 1/8W Carbon Comparator	$\begin{aligned} & R 24, R 25, R 52, \\ & R 66 \end{aligned}$
33	7	81349	RCR05G511JS	510 ohm 5\% 1/8W Carbon Comparator	$\begin{aligned} & \text { R10,R67, } \\ & \text { R74-R78 } \end{aligned}$
34	14	81349	RCR05G821JS	820 ohm 5\% 1/8W Carbon Comparator	$\begin{aligned} & \text { R8,R11,R33, } \\ & \text { R36,R39,R41, } \\ & \text { R45-R48,R51, } \\ & \text { R64,R79,R81 } \end{aligned}$
35	5	81349	RCR05G151JS	150 ohm 5\% 1/8W Carbon Comparator	$\begin{aligned} & \text { R54,R56,R58, } \\ & \text { R60,R65 } \end{aligned}$
36	2	81349	RN55C2671FM	2670 ohm 1\% 1/4W, Metal Film	R16,R22
37	2	73139	82-PAR-2K	2K Variable Resistor	R17,R23
38	1	75378	750-61-R680	Resistor, Network	U6
39	3	75378	750-81-R820	Resistor, Network	U1, U9, U21

ASSEMBLY NUMBER 117245-01 - DIGITAL DELAY GENERATOR A2 (Continued)

ITEM	QTY	MANUFACTURER'S CODE	PART NUMBER	DESCRIPTION	REF. DESIG.
40	1	01295	74LS00N	Quad 2 Input NAND Gate	U23
41	2	01295	74LS04N	Hex Inverter	U10,U35
42	1	01295	74LS20N	Triple 4 Input NAND Gate	U30
43	1	01295	74LS112N	Dual JK	U36
44	8	01295	74LS151N	Multiplexer	$\begin{aligned} & \text { U12, U14, U25, } \\ & \text { U26, U27,U37, } \\ & \text { U38, U39 } \end{aligned}$
45	4	01295	74LS190N	Decade Counter	$\begin{aligned} & \mathrm{U} 31, \mathrm{U} 2, \mathrm{U} 33, \\ & \mathrm{U} 34 \end{aligned}$
46	1	01295	74LS290N	Decade Counter	U24
47	2	01295	74LS390N	Decade Counter	U11, U13
48	1	04713	MC01231P	Dual D Hi-Speed FF	U3
49	1	04713	MC1678P	Decade Counter	U20
50	2	04713	MC10102P	Quad 2 Input NAND Gate	U4, U22
51	2	04713	MC12009P	Triple 4 Input NAND Gate	U5, U18
52	2	04713	MC10131P	Dual D Flip Flop	U7,U16
53	1	04713	MC10135P	Dual JK	U2
54	1	04713	MC10138P	Decade Counter	U8
55	3	04713	MC10198P	One Shot	U15, U17, U19
56	2	33472	117190	Pulse Amplifier	U28, U29
57	1	13103	6007A	Heat Sink, with Cap.	
58	3	13103	6011B	Heat Sink	
59	5	01295	C9314~02	14 Pin Socket	
60	27	01295	C9316-02	16 Pin Socket	

Figure 6.3 AS210-04 Digital Delay Generator Assembly, A2

ITEM QTY \begin{tabular}{llllll}

\& | MANUFAC- |
| :---: |
| TURER'S |
| CODE | \& PART NUMBER \& \& DESCRIPTION \& REF. DESIG.

1 \& 2 \& 53887 \& $3425-6000$ \& Connector, 50 Pin

2 \& 0 \& 53887 \& $3365 / 50$ \& Cable, 50 Wire, Ribbon \& Six Inches
\end{tabular}

ASSEMBLY NUMBER 117356-02 - CABLE ASSEMBLY

ITEM	QTY	MANUFACTURER'S CODE	PART NUMBER	DESCRIPTION	REF. DESIG.
1	0	81349	RGU-316	Coaxial Cable	Five Inches
2	1	02660	86350	Connector, BNC Bulkhead	
3	1	98291	51-328-3188	Connector	

ASSEMBLY NUMBER 117356-03 - CABLE ASSEMBLY

ITEM	QTY	MANUFACTURER'S CODE	PART NUMBER	DESCRIPTION	REF. DESIG.
1	0	81349	RGU-316	Coaxial Cable, 50 ohm	
2	1	02660	86350	Connector, BNC Bulkhead	
3	1	98291	51-328-3188	Connector	

ASSEmbly Number 117347-01 - HARNESS, DIGITAL, DELAY GENERATOR

ITEM	QTY	MANUFACTURER'S CODE	PART NUMBER	DESCRIPTION	REF. DESIG.
1	1	33472	117188	Switch, Rotary 30 Degree	
2	0	33472	117347	Wire List	
3	1	33472	117189-01	Switch, Thumbwheel	
4	1	27264	22-01-2251	Connector, 25 Pin	
5	25	27264	08-50-0114	Pin, Crimp	
6	0	81349	16-ET 26 AWG	Wire, 26 AWG Stranded	

6-2 MANUFACTURER'S LIST CODE TO NAME

This section contains all manufacturer's codes for materials used in the AS210 system. The codes are listed in numerical order by code.

MANUFACTURER'S LIST CODE TO NAME

CODE	MANUFACTURER	ADDRESS
00779	AMP, INC	$\begin{aligned} & \text { P.0. Box } 3608 \\ & \text { Harrisburg, PA } 17105 \end{aligned}$
01121	ALLEN-BRADLEY COMPANY	1202 South 2nd Street Milwaukee, WI 53204
01139	GENERAL ELECTRIC COMPANY	Silicone Products Business Department Waterford, NY 12188 PHONE: 518-237-3330
01281	TRW, INC.	TRW Semiconductor Division 14520 Aviation Boulevard Lawndale, CA 90260
01295	TEXAS INSTRUMENTS, INC.	```Semiconductor Group 13500 North Central Expressway P.O.Box 225012 M/S 49 Dallas, TX 75265```
02114	AMPEREX ELECTRONIC CORPORATION	Ferroxcub Division 5083 Kings Highway Saugerties, NY 12477
02660	BUNKER RAMO-ELTRA CORPORATION	Amphenol Division 2801 South. 25th Avenue Broadview, IL 60153
02735	RCA CORPORPATION	Solid State Division Route 202 Somerville, NJ 08876
03797	GENISCO TECHNOLOGY CORPORATION	```Electronics Division 18435 Susana Road Rancho Dominguez, CA }9022 PHONE: 213-537-4750```
04426	ILLINOIS TOOL WORKS, INC.	Licon Division 6615 West Irving Park Road Chicago, IL 60634
04713	MOTOROLA, INC.	Semiconductor Products Sector 5005 East McDowell Road Phoenix, AZ. 85008 PHONE: 602-244-7100

CODE	MANUFACTURER	ADDRESS
05245	CORCOM, INC.	1600 Wincheste Road Libertyville, IL 60048
06090	RAYCHEM CORPORATION	300 Constitution Drive Menlo Park, CA 94025
06383	PANDUIT CORPORATION	17301 Ridgeland Tinley Park, IL 60477
06540	MITE CORPORATION	Amatom Electronic Hardware Division 446 Blake Street New Haven, CT 06515
07263	FAIRCHILD CAMERA \& INSTRUMENT	CORPORATION Sub of Schlumberger LTD North American Sales Mail Stop 14-1053 401 Ellis Street P. 0. Drawer 7284 Mt. View, CA 94042
09353	C AND K COMPONENTS, INC.	15 Riverdale Avenue Newton, MA 02158 PHONE: 617-964-6400
11237	CTS KEENE, INC.	$\begin{aligned} & \text { P.0. Box } 1977 \\ & \text { Paso Robles, CA } 93446 \end{aligned}$
12136	PHC INDUSTRIES, INC.	1643 Haddon Avenue Camden, NJ 08103
13103	THERMALLOY COMPANY, INC.	2021 West Valley View Lane P. 0. Box 340839 Dallas, TX 75234
13556	TRW CINCH CONNECTORS	Nuline Facility Division of TRW, Inc. New Hope, MN
14099	SEMTECH CORPORATION	652 Mitchell Road Newbury Park, CA 91320 PHONE: 213-628-5392
14655	CORNELL-DUBILIER ELECTRONICS	Div. of Federal Pacific Electric Co. Government Contracts Department 150 Avenue L Newark, NJ 07101

26805 OMNI SPECTRA, INC.

26806 AMERICAN ZETTLER, INC.
GENERAL ELECTRIC COMPANY

ADDRESS

Div. of Scientific Components Corp. 2625 East 14th Street Brooklyn, NY 11235

BELDEN ELECTRONIC WIRE \& CABLE Sub of Cooper Industries, Inc. 2200 U.S. Highway 27 South P.0. Box 1980 Richmond, IN 47374 PHONE: 317-983-5200

VISHAY INTERTECHNOLOGY, INC. Vishay Resistor Products Division 63 Lincoln Highway Malvern, PA 19355

Battery Business Department 441 Highway N P. O. Box 861 Gainesville, FL 32602 PHONE: 904-462-3911

PAMOTOR DIVISION OF WILLIAM J. PURDY COMPANY
770 Airport Boulevard Burlingame, CA 94010

Microwave Connector Division Wal tham, MA

16881 Hale Avenue Irvine, CA 92714

27014 NATIONAL SEMICONDUCTOR CORPORATION
2900 Semiconductor Drive Santa Clara, CA 95051

2222 Wellington Court Lisle, IL 60532

Trimpot Division 1200 Columbia Avenue Riverside, CA

884 Hermosa Court
Sunnyvale, CA 94086
3585 SW 198th Avenue Aloha, OR 97005

CODE	MANUFACTURER	ADDRESS
50088	MOSTEK CORPORATION	Sub of United Technologies Corp. 1215 West Crosby Road P.0. Box 169 Carrollton, TX 75006
50434	HEWLETT-PACKARD COMPANY	Optoelectronics Division 640 Page Mill Road Palo Alto, CA 94304
51642	CENTRE ENGINEERING, INC.	2820 E. College Avenue State College, PA 16801
53387	Minnesota mining and manufacturing	NG COMPANY Electronic Products Division 3M Center St. Paul, MN 55101
54893	HEWLETT-PACKARD COMPANY	Microwave Semiconductor Division 350 West Trimble Road San Jose, CA 95131
55154	PLESSEY PERIPHERAL SYSTEMS, INC.	17466 Daimler Avenue P. O. Box 19616 Irvine, CA 92714
55566	R A F ELECTRONIC HARDWARE, INC.	95 Silvermine Road Seymour, CT 06483 PHONE: 203-888-2133
56289	SPRAGUE ELECTRIC COMPANY	87 Marshall Street North Adams, MA 01247
58910	ABBOTT TRANSISTOR LABORATORIES,	INC. Transformer Division 639 South Glenwood Place Burbank, CA 91506
59660	TUSONIX, INC.	2155 North Forbes Boulevard Suite 107 Tucson, AZ 85745
59705	STANDEX INTERNATIONAL CORPORATIO	N United Service Equipment Co. Div. 1152 Park Avenue Murfreesboro, TN 37130

MANUFACTURER
MIDLAND-ROSS CORPORATION

CTS CORPORATION

DOW CORNING CORPORATION

BECKMAN INSTRUMENTS, INC.

TRACOR LITTLEFUSE, INC.

ADDRESS
Cambion Division
One Alewife Place Cambridge, MA 02140 PHONE: 617-491-5400

905 North West Boulevard Elkhart, IN 46514

3901 South Saginaw Road Midland, MI 48640

Helipot Division Sub of Smith Kline/Beckman Corp. 2500 Harbor Boulevard Fullerton, CA 92634

800 East Northwest Highway Des Plaines, IL 60016

RUBBERCRAFT CORPORATION OF CALIFORNIA LTD.
1800 West 220th Street P.0. Box B Torrance, CA 90507
PHONE: 213-328-5402
170 Pearl Street
South Braintree, MA 02184 PHONE: 617-853-5000

4900 Southwest Griffith Drive P. 0. Box 500 Beaverton, OR 97077

Promultgated by Military Departments/Agencies Under Authority of Defense Standardization Manual 4120 3-M

A North American Philips Company 1913 Atlantic Avenue
Manasquan, NJ 08736
Litton Systems-Useco Division 1536 Saticoy Street Van Nuys, CA 91409

Sub of Emhart Industries, Inc. 4760 Kentucky Avenue P. 0. Box 372 Indianapolis, IN 46206

CODE	MANUFACTURER	ADDRESS
91506	AUGAT, INC.	33 Perry Avenue P. 0. Box 779
		Attleboro, MA 02703
91637	DALE ELECTRONICS, INC.	2064 12th Avenue P.0. Box 609 Columbus, NE 68601 PHONE: 402-563-6301
91836	KINGS ELECTRONICS COMPANY, INC	40 Marbledale Road Tuckahoe, NY 10707 PHONE: 914-793-5000
92194	ALPHA WIRE CORPORATION	71 Lidgerwood Avenue Elizabeth, NJ 07207 PHONE: 201-925-8000
95146	ALCO ELECTRONIC PRODUCTS, INC.	1551 0sgood Street North Andover, MA 01845
95238	CONTINENTAL CONNECTOR CORPORATI	
		34-63 56th Street Woodside, NY 11377 PHONE: 212-899-4422
95987	WECKESSER COMPANY, INC.	Chicago, IL
98291	SEALECTRO CORPORATION	225 Hoyt Mamaroneck, NY 10544
99800	AMERICAN PRECISION INDUSTRIES,	INC. Delevan Division 270 Quaker Road East Aurora, NY 14052 PHONE: 716-652-3600

AS2 10-05 STANDBY BATTERY

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording and/or otherwise without the prior written permission of ARGOSystems, Inc. This manual may not be lent, resold, hired out or otherwise disposed of by way of trade in any form of binding or cover other than that in which it is published, without the prior consent of ARGOSystems, Inc.
TABLE OF CONTENTS
ChapterTitle
Page
Preface iii
1 GENERAL INFORMATION 1-1
1-1 Introduction 1-1
1-2 Physical and Electrical Description 1-1
2
INSTALLATION 2-1
2-1 Introduction 2-1
3 OPERATION 3-1
3-1 Introduction 3-1
4 THEORY OF OPERATION 4-1
4-1 Introduction 4-1
5 MAINTENANCE AND CALIBRATION 5-1
5-1 Introduction 5-1SECTION I
5-2 Preventive Maintenance 5-2
SECTION II
5-3 Performance Tests 5-3
SECTION III
5-4 Calibration/Alignment Procedures 5-4
5-5 Access to AS210-05 Standby Battery 5-4
5-6 Charge Indicator Alignment Procedure 5-4
SECTION IV
5-7 Troubleshooting Procedures 5-5
6 ILLUSTRATED PARTS LIST 6-1
6-1 Introduction 6-1
6-2 Manufacturer's Code List 6-12

LIST OF ILLUSTRATIONS

Figure	Title	Page
1.1	AS210-05 Standby Battery Module	1-2
3.1	Standby Battery Controls and Indicators	3-3
4.1	Standby Battery Functional Block Diagram	4-2
5.1	AS210-05 Standby Battery Schematic Design	5-6
6.1	AS210-05 Standby Battery Module Assembly	6-2
6.2	AS210-05 Standby Battery Interconnect Assembly	6-8
6.3	AS210-05 Standby Battery Charging Assembly	6-9
LIST OF TABLES		
Table	Title	Page
3-1	Standby Battery Controls and Indicators	3-2
5-1	Preventive Maintenance Checks and Services	5-2

PREFACE

This manual contains installation, operation and maintenance instructions for the AS210-05 Standby Battery. The data contained herein is arranged as follows:

Chapter 1	General Information
Chapter 2	Installation
Chapter 3	Operation
Chapter 4	Theory of Operation
Chapter 5	Maintenance and Calibration
Chapter 6	Illustrated Parts List

Reference Publications

AS210A-PM	Portable Mainframe Operation and Maintenance Manual
AS210RM,LM	Mainframe Operation and Maintenance Manual
AS210-01A	Module Controller Operation and Maintenance
AS210-02	Frequency Comparator Operation and Maintenance Manual
AS210-03	Frequency Generator Operation and Maintenance Manual
AS210-04	Digital Delay Generator Operation and Maintenance Manual
AS210-06	Microwave Generator Operation and Maintenance Manual
AS210-08	Distribution Amplifier Operation and Maintenance Manual
AS210-20	Time Clock Operation and Maintenance Manual

CHAPTER 1

GENERAL INFORMATION

1-1 INTRODUCTION

The AS210-05 Standby Battery module is designed for use with the AS210 Electronic Counter and Frequéncy Standard Calibration System Mainframe. The Standby Battery is illustrated in Figure 1.1. This module can be plugged into any one of the three locations on the AS210 Mainframe that is not being occupied by another module. The Standby Battery supplies power to the Rubidium Frequency Standard in the Mainframe during an A.C. power failure or when the AS210 is in transit from one location to another. The use of the Standby Battery during transit avoids the 10 -minute warm-up necessary for achieving maximum frequency accuracy of 1 part in 10^{-10}. The standby battery is also needed to keep the power off time clock functional during power drops or transit conditions. The unit can be used to maintain ± 1 part in 10^{-9} accuracy for periods up to three (four typical) hours and have accuracy within 1×10^{-10} in 30 seconds after power is resumed. This manual covers the installation, operation and maintenance of the standby battery.

1-2 PHYSICAL AND ELECTRICAL DESCRIPTION

The Standby Battery is constructed in a single width modular plug-in frame. Rechargeable lead-acid batteries are mounted on one side of an internal mounting plate. A printed circuit card assembly with the charging indicator and control circuits is mounted on the opposite side of this mounting plate. Mounted on the front panel is the STANDBY/OFF switch. In standby, the switch places the module in an automatic mode to supply power as soon as prime power is disconnected. Also found on the front panel is the TEST pushbutton switch which, when pressed, tests the condition of the battery. Four LED indicators provide a visual means of determining the charge condition of the batteries. A small knob in the lower left hand corner of the front panel is used for removal and retention of the module in the mainframe.

Figure 1.1 AS210-05 Standby Battery Module

CHAPTER 2

INSTALLATION

2-1 INTRODUCTION

The Standby Battery is a plug-in module of the Electronic Counter and Frequency Standard Calibration system. The module is retained by a removable locking bar on the mainframe. The Standby Battery requires no special power or handling. It will normally be installed during transit of the instrument or when prime power has been disconnected.

NOTE 1: This module cannot be installed in a Tektronix mainframe.

NOTE 2: Prior to shipment, the battery will be disconnected at the factory by removing the 5 amp fuse. Reinstall the 5 amp fuse carefully to avoid shorting the battery before operation.

NOTE 3: The Standby Battery Module should not be left in the standby position when the module is not plugged into the AS210 mainframe. When inserted into the mainframe, the module should not be left in the standby position for periods in excess of three hours, when mainframe power is off. If one of the above conditions occurs, damage could result to the internal battery. pack which would require replacement of batteries.

CHAPTER 3

OPERATION

3-1 INTRODUCTION

This chapter describes the operation of the standby battery module. Figure 3.1 and Table 3-1 illustrate and describe the front panel controls and indicators. No operator interface is required other than observation of the charge condition and placing the unit in the standby or off mode.

Table 3-1
STANDBY BATTERY CONTROLS AND INDICATORS

INDEX NO. FIGURE 3.1	PANEL MARKING	FUNCTION
1	HIGH CHARGE	LED indicator illuminates when the module is in the high charge rate mode (250 mA).
2	100\%	LED indicator is $O N$ when battery is fully charged. Lights when TEST switch is pressed to check charge condition.
3	75\%	LED indicator is $O N$ when battery is above 75 percent of fully charged condition. Lights when switch is pressed to check charge condition.
4	50\%	LED indicator is $O N$ when battery is above 50 percent of fully charged condition. Lights when switch is pressed to check charge condition.
5	TEST	Momentary switch is pressed to check battery charge condition. See items 2, 3, and 4.
6	STANDBY/OFF	Switch for selecting the STANDBY or OFF mode of the module. In the STANDBY position the batteries are automatically inserted in the circuit when prime power is lost or disconnected.
7	None	Release mechanism used for plug-in, removal and retention of the module.

Figure 3.1 Standby Battery Controls and Indicators

CHAPTER 4
THEORY OF OPERATION

INTRODUCTION

This chapter contains a functional description of the Standby Battery. Figure 4.1 is a functional block diagram. Refer to the schematic diagram, Figure 5.1 for more circuit details.

The primary purpose of the Standby Battery Module is to supply +26 V dc power to the Rubidum frequency standard when prime power is removed. The module also provides a regulated charging current for the batteries. The module is comprised of a switching circuit, charging circuit and display driver circuit. When prime power is lost from the mainframe, relay K1 in the switching circuit goes to the N.C. position, allowing current to flow from the battery through the standby switch to the Rubidium frequency standard in the mainframe. A low voltage dropout relay, K2, disconnects the battery from the standard when voltage falls below 20V dc, preventing the batteries from being destroyed. The dropout circuit is disabled when the battery voltage rises above 24 V dc. While prime power is being maintained, 31 V dc from the mainframe power supply is applied to the charging circuit. A 250 mA charging current is maintained through series pass transistor Q1. Variable resistor R7 forms a voltage divider with R9 and R10. This turns Q1 OFF when the battery voltage reaches 28.6 V dc. The HIGH CHARGE 1 amp will remain OFF until the battery voltage drops below 27.5 V dc. A trickle charge is applied to the battery through R16 when the high charge circuit is OFF. While the charger is in the high current mode the HIGH CHARGE LED indicator is lighted on the front panel. When the battery voltage equals 28.2 V dc, a voltage limiter circuit consisting of Q4 shunts the trickle charging current to ground. The voltage limit is set with R11 which forms a voltage divider with zener CR2

and R6. When the TEST button on the module's front panel is pressed, the battery voltage is applied to the display driver circuit. This circuit consists of a load resistor R5, regulator $U 2$ and dot/bar display driver IC device U1. The display driver is calibrated by R15 to light three LED indicators on the module's front panel. At 25 V dc the green 100 percent lamp is lit, at approximately 24 V dc the yellow 75 percent lamp is lit. The red 50 percent lamp is illuminated at approximately 23 V dc. When the battery's TEST switch is pressed, a 100 ohm load is maintained by R5 in order to test the battery under load condition when it is not connected to the Rubidium standard.

CHAPTER 5
 MAINTENANCE AND CALIBRATION

5-1 . INTRODUCTION

The purpose of this chapter is to provide maintenance and calibration data for the AS210-05 Standby Battery. Section I covers routine preventive maintenance procedures. Section II outlines performance tests for the Standby Battery. Section III contains the calibration/alignment procedures for the AS210-05 module and Section IV describes troubleshooting data. Please contact the factory for any assistance required in the maintenance or servicing of the AS210-05.

SECTION I

5-2

PREVENTIVE MAINTENANCE

Tabie 5-1 lists preventive maintenance checks and services which should be performed regularly.

Table 5-1
PREVENTIVE MAINTENANCE CHECKS AND SERVICES

ITEM	PROCEDURES
CABLES	Visually inspect cables for strained, cut, frayed, or other damaged insulation.
Make sure the exterior surfaces of the unit are clean. If	
necessary, clean exterior surfaces as follows:	
A. Remove the dust and loose dirt with a clean soft cloth.	
B. Remove dust or dirt from plugs and jacks with a brush.	
PRESERVATION	

SECTION II

5-3
 PERFORMANCE TESTS

Performance testing for the AS210-05 Standby Battery is limited to the front panel test button. Upon pressing the front panel test button, LEDs will light corresponding to the percent of charge the battery contains. To charge the AS210-05, simply run the AS210 system with the standby battery installed until the high charge LED goes out or cycles on and off.

SECTION III

CALIBRATION/ALIGNMENT PROCEDURES

WARNING

The following Calibration/Alignment Procedures (Chapter 5, Section III) and Troubleshooting Procedures (Chapter 5, Section IV) are for use by qualified personnel only. To avoid personal injury, do not perform any servicing other than that of Routine Maintenance (Chapter 5, Section I) and Performance Testing (Chapter 5, Section II) unless you are qualified to do so.

5-5 ACCESS TO AS210-05 STANDBY BATTERY

Please reference the AS210 mainframe manual for the disassembly procedure of the AS210 system to allow access to the AS210-05 Standby Battery module. Access to the module circuitry itself is gained by removing the two metal side covers with a small straight-blade screwdriver. Place the module on one of its sides so that one cover is facing up. Starting with the end toward the edge connector, insert the screwdriver into one of the slots where the cover mates with the module chassis and pry the cover up. It will be necessary to move along the slot toward the front panel of the module and repeat the prying action to loosen the side of the cover from the module. Repeat this technique to free the other side of the cover from the chassis. Set the free cover clear of the module and flip the module over so that the second cover is now facing up. Repeat the above procedure to free this cover.

5-6 CHARGE INDICATOR ALIGNMENT PROCEDURE

User adjustment should not be required. Initial adjustments are preset at factory. If alignment is considered necessary, please contact the factory.

WARNING

Use extreme care when troubleshooting the module. The batteries can deliver a short circuit current of 250 amperes. If accidently shorted, severe burns could result. Never bypass the 5 ampere fuse or replace it with a larger value.

The charge indicators on the front panel of the module provide the operator with the primary troubleshooting data. The indicators are the 100 percent, 75 percent, 50 percent and HIGH CHARGE LEDs described in Chapter 3. The charge percentage indicators give an approximation of the amount of charge on the battery. After the battery has been fully charged, all of the charge percentage indicators should be illuminated. If they are not and it has been determined that the battery is fully charged, check U1, U2 or the LEDs. The determination of battery condition will have to be made with an external charge tester before these components can be declared defective. The HIGH CHARGE indicator should only be on when the battery is being initially charged; thereafter it cycles on and off. If the indicator does not go off (and start cycling on and off) after a maximum of 12 hours of charging, check the battery and charging circuit. If the indicator does not come on, check the 5 ampere fuse and the LED. The LED is part of the charging circuit, therefore the battery will not charge if defective. When the TEST button is pressed, LED CR10 on the circuit board should illuminate. If it does not,check the 5 ampere fuse, battery charge condition, test switch and U2.

NOTES: Unless otherwise specified

1. Interpret drawing in accordance with standard prescribed by MIL-STD-100.
2. All resistance values are in ohms, $1 / 4 W, \pm 5$ percent.
3. All capacitance values are in $\mu \mathrm{F}$.
4. \leftarrow denotes signal ground.
5. Relays shown in standby and mainframe power off.
```
    CHAPTER }
ILLUSTRATED PARTS LIST
```

6-1 INTRODUCTION

This chapter contains an illustrated parts list for the AS210-05 Standby Battery. The assembly numbers and assembly title are listed at the top of the parts lists. The parts lists are divided into six columns and arranged in the following order:

Column 1 - Item Number

Column 2 - Quantity per assembly.

Column 3 - Manufacturer's Code

Column 4 - Part Number

Column 5 - Description

Column 6 - Reference Designation

ASSEMBLY NUMBER 117290-01 - STANDBY BATTERY MODULE AS-210-5

ITEM	QTY	MANUFACTURER'S CODE	PART NUMBER	DESCRIPTION	REF. DESIG.
1	1	33472	117330-01		
2	1	33472 33472	117330-01	Battery Pack Assembly Battery Interconnect Assembly	A1
3	1	33472	117270-01	Battery Charger Assembly	A2
4	1	33472	117300-01	Plate, Battery Support	
5	0	06383	PBMS-H25C	Clamp	
6	4	06383	MLT4S-CP	Pan-Steel Ties	
7	6	81349	MS51957-30	Screw: PNH 6-32X1/2	
8	18	81349	NAS620-C6	Reduced OD Flat Washer \#6	
9	12	81349	MS35338-136	Split Lock Washer \#6	
10	12	81349	NAS671-C6	Small Pattern Hex Nut \#6	
11	1	33472	117353-02	Cable Assembly 2 Wire	
12	1	33472	117326	Frame	
13	1	33472	117355-01	Cable Assembly 4 Wire	
14	1	33472	117291-01	Front, Panel, Lexan	
15	0	33472	117295	Wire List	
16	4	03797	0086-13D	Socket, LED	
17	1	50434	5082-4957	LED, Green	100\%
18	1	50434	5082-4557	LED, Amber	
19	2	50434	5082-4657	LED, Red	50% and High Charge
20	1	09353	8121	Switch, Pushbutton	S1
21	1	09353	7089-2	Small Cap, Black	
22	1	09353	8121	Switch, Pushbutton	S1
23	1	09353	7089-2	Small Cap, Black	
24	1	98353	7101-J1-ZQE	Switch, Toggle, SPDT	S2
25	2	81349	NAS662-C2R8	Screw Flathead 2-56×1/2	
26	1	27264	09-50-7121	Connector, Plug, 12 Pin	

ASSEMBLY NUMBER 117290-01 - STANDBY BATTERY MODULE AS-210-5 (Continued)

ITEM	QTY	$\begin{aligned} & \text { MANUFAC- } \\ & \text { TURER'S } \\ & \text { CODE } \\ & \hline \end{aligned}$	PART NUMBER	DESCRIPTION
27	12	27264	08-50-0108	Pin, Crimp
28	2	* 81349	MS35338-134	Split Lock Washer \#2
29	0	81349	ET 24 AWG	Wipe 24 AWG Stranded
30	1	33472	117291-02	Subpanel, Plastic
31	1	33472	117291-03	Pane1, Rear
32	1	80009	366-1690-01	Latch Pull
33	1	33472	117291-02	Plastic Panel
34	1	33472	117291-01	Lexan Pane
35	1	80009	105-0718-01	Latch
36	1	80009	105-0719-00	Latch Retainer
37	1	80009	426-0724-00	Bottom
38	2	80009	337-1399-00	Side Cover
39	1	80009	214-1061-00	Tension Spring
40	1	80009	426-0725-00	Top
41	2	80009	386-3657-01	Guide Pin
43	1	81349	0000	Screw FLH STL Sheetmetal
42	4	81349	MS24693-C26	Scew FLH 6-32×3/8
43	4	81349	0000	Screw PNH STL Sheetmetal \#6X3/8

REF. DESIG.

ASSEMBLY NUMBER 117265-01 - BATTERY MODEL INTERCONNECT ASSEMBLY A1

ASSEMBLY NUMBER 117270-01 - BATTERY CHARGER

ITEM	QTY	MANUFACTURER'S CODE	PART NUMBER	DESCRIPTION	REF. DESIG.
1	1	33472	117273	PWB	
2	0	33472	117271	Schematic	
3	0	33472	117270	Assembly Drawing	
4	1	81349	CK05BX473K	. 047 UFD 10\% Ceramic Cap	C1
5	1	04713	1N4741A	Zener Diode 18V	CR11
6	3	04713	1N4735A	Zener Diode 6.2V	CR3,CR4,CR5
7	1	50434	5082-4487	LED	CR10
8	2	04713	1N4748A	Diode, Zener 22V	CR1,CR2
9	4	27014	1N4002	Diode	$\begin{aligned} & \text { CR6,CR7,CR8, } \\ & \text { CR9 } \end{aligned}$
10	1	27264	09-88-2041	4 Pin Wafer, RT Angle	J1
11	1	27264	09-88-2121	12 Pin Wafer, RT Angle	J2
12	2	78277	60RE1S-12DC	Relay	K1, K2
13	1	27264	09-88-2021	2 Pin Wafer, RT Angle	J3
14	1	04713	1 N 4749 A	Zener Diode 24V.	CR12
15	1	04713	2N4918	Transistor	Q1
16	2	04713	MJE521	Transistor	Q2, Q5
17	2	27014	2N2222A	Transistor	Q3, Q4
18	2	13103	6073B	Heat Sink	
19	2	81349	MS51957-16	Screw: PNH 4-40×7/16	
20	3	81349	MS51957-15	Screw: PNH 4-40x3/8	
21	1	81349	MS51957-14	Screw: PNH 4-40×5/16	
22	8	81349	NAS620-C4	Reduced OD Flat Washer \#4	
23	8	81349	NAS620-C4	Reduced OD Flat Washer \#4	
24	4	81349	MS35338-135	Split Lock Washer \#4	
25	4	81349	NAS671-CH	Small Pattern Hex Nut \#4	
26	2	81349	MS1957-4	Screw: PNH 2-56×5/16	
27	4	81349	NAS620-C2	Reduced OD F1at Washer \#2	

ASSEMBLY NUMBER 117270-01 - BATTERY CHARGER (Continued)

ITEM	QTY	MANUFACTURER'S CODE	PART NUMBER	DESCRIPTION	REF. DESIG.
28	2	81349	MS35338-134	Split Lock Washer \#2	
29	2	81349	NAS671-C2	Small Pattern Hex Nut \#2	
30	1	81349	RCR07G153JS	15K ohm 5\% 1/4W Carbon Comp.	R4
31	1	81349	RCR07G270JS	27 ohm 5\% 1/4W Carbon Comp	R8
32	1	81349	RCR07G271JS	270 ohm 5\% 1/4W Carbon Comp	R14
33	1	81349	RCR07G681JS	680 ohm 5\% 1/4W Carbon Comp	R13
34	2	81349	RCR07G821JS	820 ohm 5\% 1/4W Carbon Comp	R9,R12
35	2	81349	RCR32G100JS	10 ohm 5\% 1W Carbon Comp	R1, R2
36	1	81349	RCR32G102JS	1K ohm 5\% 1W, Carbon Comp	R3
37	1	81349	RCR07G102JS	1K ohm 5\%1/4W Carbon Comp	R17
38	1	81349	RCR07G751JS	750 ohm 5\% 1/4W Carbon Comp	R6
39	1	81349	RCR07G273JS	27K ohm 5\% 1/4W Carbon Comp	R10
40	1	81349	RCR42G271JS	270 ohm 5\% 2W Carbon Comp	R16
41	1	91637	RE65G1000	100 ohm 1\% 10W Resistor	R5
42	2	05712	72XWR2K	2K Potentiometer	R7,R15
43	1	05712	72XWR500	500 ohm Potentiometer	R11
44	1	$27014{ }^{\circ}$	LM3914	Bar Graph Display Driver	U1
45	1	27014	LM340T-5	5V Regulator	U2
46	1	01295	C9318-02	18 Pin Socket	

Figure 6.3 AS210-05 Standby Battery Charging Assembly

ASSEMBLY NUMBER 117353-02 - CABLE ASSEMBLY

ITEM	QTY	$\begin{aligned} & \text { MANUFAC- } \\ & \text { TURER'S } \\ & \text { CODE } \\ & \hline \end{aligned}$	PART NUMBER	DESCRIPTION	REF. DESIG.
1	1	27264	. 09-50-7021	Connector, 2 Pin	
2	2	27264	08-50-0108	Pin Crimp	
3	0	81349	ET 26 AWG	Wire Stranded Teflon Insulated	
ASSEMBLY NUMBER 117355-01 - CABLE ASSEMBLY					
ITEM	QTY	$\begin{aligned} & \text { MANUFAC- } \\ & \text { TURER'S } \\ & \text { CODE } \\ & \hline \end{aligned}$	PART NUMBER	DESCRIPTION	REF. DESIG.
1	1	27264	09-50-7041	Connector, 4 Pin	
2	4	27264	08-50-0108	Pin Crimp	.
3	0	81349	ET 26 AWG	Wire 26 Gauge Stranded	

This section contains all manufacturer's codes for materials used in the AS210 system. The codes are listed in numerical order by code.

MANUFACTURER'S LIST CODE TO NAME

CODE	MANUFACTURER	ADDRESS
00779	AMP, INC	P.0. Box 3608 Hạrisburg, PA 17105
01121	ALLEN-BRADLEY COMPANY	1202 South 2nd Street Milwaukee, WI 53204
01139	GENERAL ELECTRIC COMPANY	Silicone Products Business Department Waterford, NY 12188 PHONE: 518-237-3330
01281	TRW, INC.	TRW Semiconductor Division 14520 Aviation Boulevard Lawndale, CA 90260
01295	TEXAS INSTRUMENTS, INC.	Semiconductor Group 13500 North Central Expressway P.O.Box 225012 M/S 49 Dallas, TX 75265
02114	AMPEREX ELECTRONIC CORPORATION	Ferroxcub Division 5083 Kings Highway Saugerties, NY 12477
02660	BUNKER RAMO-ELTRA CORPORATION	Amphenol Division 2801 South. 25th Avenue Broadview, IL 60153
02735	RCA CORPORPATION	Solid State Division Route 202 Somerville, NJ 08876
03797	GENISCO TECHNOLOGY CORPORATION	Electronics Division 18435 Susana Road Rancho Dominguez, CA 90221 PHONE: 213-537-4750
04426	ILLINOIS TOOL WORKS, INC.	Licon Division 6615 West Irving Park Road Chicago, IL 60634
04713	MOTOROLA, INC.	Semiconductor Products Sector 5005 East McDowell Road Phoenix, AZ 85008 PHONE: 602-244-7100

CODE	MANUFACTURER	ADDRESS
05245	CORCOM, INC.	1600 Wincheste Road Libertyville, IL 60048
06090	RAYCHEM CORPORATION	300 Constitution Drive Menlo Park, CA 94025
06383	PANDUIT CORPORATION	17301 Ridgeland Tinley Park, IL 60477
06540	MITE CORPORATION	Amatom Electronic Hardware Division 446 Blake Street New Haven, CT 06515
07263	FAIRCHILD CAMERA \& INSTRUMENT	CORPORATION Sub of Schlumberger LTD North American Sales Mail Stop 14-1053 401 Ellis Street P. 0. Drawer 7284 Mt. View, CA 94042
09353	C AND K COMPONENTS, INC.	15 Riverdale Avenue Newton, MA 02158 PHONE: 617-964-6400
11237	CTS KEENE, INC.	P.O. Box 1977 Paso Robles, CA 93446
12136	PHC INDUSTRIES, INC.	1643 Haddon Avenue Camden, NJ 08103
13103	THERMALLOY COMPANY, INC.	2021 West Valley View Lane P. O. Box 340839 Dallas, TX 75234
13556	TRW CINCH CONNECTORS	Nuline Facility Division of TRW, Inc. New Hope, MN
14099	SEMTECH CORPORATION	652 Mitchell Road Newbury Park, CA 91320 PHONE: 213-628-5392
14655	CORNELL-DUBILIER ELECTRONICS	Div. of Federal Pacific Electric Co. Government Contracts Department 150 Avenue L Newark, NJ 07101

CODE	MANUFACTURER	ADDRESS
15542	MINI-CIRCUITS LABORATORY	Div. of Scientific Components Corp. 2625 East 14th Street Brooklyn, NY 11235
16428	BELDEN ELECTRONIC WIRE \& CABLE	Sub of Cooper Industries, Inc. 2200 U.S. Highway 27 South P.O. Box 1980 Richmond, IN 47374 PHONE: 317-983-5200
18612	VISHAY INTERTECHNOLOGY, INC.	Vishay Resistor Products Division 63 Lincoln Highway Malvern, PA 19355
19209	GENERAL ELECTRIC COMPANY	Battery Business Department 441 Highway N P. 0. Box 861 Gainesville, FL 32602 PHONE: 904-462-3911
23936	PAMOTOR DIVISION OF WILLIAM J.	PURDY COMPANY 770 Airport Boulevard Burlingame, CA 94010
26805	OMNI SPECTRA, INC.	Microwave Connector Division Waltham, MA
26806	AMERICAN ZETTLER, INC.	16881 Hale Avenue Irvine, CA 92714
27014	NATIONAL SEMICONDUCTOR CORPORATI	ION 2900 Semiconductor Drive Santa Clara, CA 95051
27264	MOLEX, INC.	2222 Wellington Court Lisle, IL 60532
32997	BOURNS, INC.	Trimpot Division 1200 Columbia Avenue Riverside, CA
33472	ARGOSYSTEMS, Inc.	884 Hermosa Court Sunnyvale, CA 94086
34649	INTEL CORPORATION	3585 SW 198th Avenue Aloha, OR 97005

CODE	MANUFACTURER	ADDRESS
50088	MOSTEK CORPORATION	Sub of United Technologies Corp. 1215 West Crosby Road $\text { P.O. Box } 169$ Carrollton, TX 75006
50434	HEWLETT-PACKARD COMPANY	Optoelectronics Division 640 Page Mill Road Palo Alto, CA 94304
51642	CENTRE ENGINEERING, INC.	2820 E. College Avenue State College, PA 16801
53387	MINNESOTA MINING AND MANUFACTUR	RING COMPANY Electronic Products Division 3M Center St. Paul, MN 55101
54893	HEWLETT-PACKARD COMPANY	Microwave Semiconductor Division 350 West Trimble Road San Jose, CA 95131
55154	PLESSEY PERIPHERAL SYSTEMS, INC.	17466 Daimler Avenue P. O. Box 19616 Irvine, CA 92714
55566	R A F ELECTRONIC HARDWARE, INC.	95 Silvermine Road Seymour, CT 06483 PHONE: 203-888-2133
56289	SPRAGUE ELECTRIC COMPANY	87 Marshall Street North Adams, MA 01247
58910	ABBOTT TRANSISTOR LABORATORIES,	INC. Transformer Division 639 South Glenwood Place Burbank, CA 91506
59660	TUSONIX, INC. 2	2155 North Forbes Boulevard Suite 107 Tucson, AZ 85745
59705	STANDEX INTERNATIONAL CORPORATION	United Service Equipment Co. Div. 152 Park Avenue Murfreesboro, TN 37130

CODE	MANUFACTURER	ADDRESS
71279	MIDLAND-ROSS CORPORATION	Cambion Division One Alewife Place Cambridge, MA 02140 PHONE: 617-491-5400
71450	- CTS CORPORATION	905 North West Boulevard Elkhart, IN 46514
71984	DOW CORNING CORPORATION	3901 South Saginaw Road Midland, MI 48640
73138	BECKMAN INSTRUMENTS, INC.	Helipot Division Sub of Smith Kline/Beckman Corp. 2500 Harbor Boulevard Fullerton, CA 92634
75915	TRACOR LITTLEFUSE, INC.	800 East Northwest Highway Des Plaines, IL 60016
77969	RUBBERCRAFT CORPORATION OF	CALIFORNIA LTD. 1800 West 220th Street P.0. Box B Torrance, CA 90507 PHONE: 213-328-5402
78277	SIGMA INSTRUMENTS, INC.	170 Pearl Street South Braintree, MA 02184 PHONE: 617-853-5000
80009	TEKTRONIX, INC.	4900 Southwest Griffith Drive P. 0. Box 500 Beaverton, OR 97077
81349	MILITARY SPECIFICATIONS	Promultgated by Military Departments/Agencies Under Authority of Defense Standardization Manual 4120 3-M
83330	SMITH HERMAN H. INC.	A North American Philips Company 1913 Atlantic Avenue Manasquan, NJ 08736
88245	WINCHESTER ELECTRONICS	Litton Systems-Useco Division 1536 Saticoy Street Van Nuys, CA 91409
90201	MALLORY CAPACITOR COMPANY	Sub of Emhart Industries, Inc. 4760 Kentucky Avenue P. 0. Box 372 Indianapolis, IN 46206
	6-16	

AS2 10-06

MICROWAVE FREQUENCY GENERATOR MODULE

Abstract

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording and/or otherwise without the prior written permission of ARGOSystems, Inc. This manual may not be lent, resold, hired out or otherwise disposed of by way of trade in any form of binding or cover other than that in which it is published, without the prior consent of ARGOSystems, Inc.

TABLE OF CONTENTS
Section Title Page
PREFACE v
1 GENERAL INFORMATION 1-1
1.1 Introduction 1-1
1.2 Physical and Electrical Description 1-1
2 INSTALLATION 2-1
2.1 Introduction 2-1
3 OPERATION 3-1
3.1 Introduction 3-1
3.2 Controls and Connectors 3-1
3.3 Operating Instructions 3-1
4 THEORY OF OPERATION 4-1
4.1 Introduction 4-1
4.2 Overall Description 4-1
4.3 Frequency Generation Circuitry 4-3
4.4 Level Control Circuitry 4-4
4.5 Self-Test Circuitry 4-5
5 MAINTENANCE AND CALIBRATION 5-1
5.1 Introduction 5-1
5.2 Preventive Maintenance Checks and Services 5-2
5.3 Performance Testing Overview 5-3
5.4 RF Output Frequency Performance Test 5-3
5.5 Test Procedure 5-4
5.6 RF Output Level Performance Test 5-4
5.7 Test Procedure 5-7
5.8 Calibration/Alignment Procedures Overview 5-11
5.9 Access to AS210-06 Microwave Frequency Generator Module 5-11
$5.10+15$ Power Supply Alignment 5-13
5.11 Troubleshooting Procedures Overview 5-14
Section Title Page
6 ILLUSTRATED PARTS LISTS 6-1
6.1 Introduction 6-1
6.2 Manufacturer's Code List 6-20

LIST OF ILLUSTRATIONS

Figure	Title	Page
1-1	AS210-06 Microwave Frequency Generator Module	1-2
2-1	Connect Diagram for AS210-06 3-Foot, Low-Loss Cable Assembly and for Leveling Detector	2-3
3-1	AS210-06 Module Front Panel Controls and Connectors	3-2
3-2	AS210-06 Leveling Detector Connectors	3-4
4-1	Microwave Frequency Generator Module Functional Block Diagram	4-1
5-1	AS210-06 Microwave Frequency Generator Module RF Output Frequency Test Configuration	5-5
5-2	AS210-06 Microwave Frequency Generator Module RF Output Level Test Configuration	5-8
5-3	Flow Diagram of the Calibration/Alignment Procedure for the AS210-06 Microwave Frequency Generator Module	5-12
5-4	AS210-06 Control Circuit Card Schematic Diagram	5-17
5-5	AS210-06 Chassis Interconnect Diagram	5-18
6-1	AS210-06 Module Showing Control Circuit and Assembly	6-2
6-2	AS210-06 Module Showing Microwave Subsystem	6-3
6-3	AS210-06 Control Circuit Card (A2) Assembly Diagram	6-15

LIST OF TABLES

Table Title Page
1-1 AS210-06 Equipment Specifications 1-4
3-1 AS210-06 Module Front Panel Controls and Connectors 3-3
3-2 AS210-06 Leveling Detector Connectors 3-5
5-1 Preventive Maintenance Checks and Services 5-2
5-2 Required Test Equipment for the Internal Frequency Standard Accuracy Test 5-3
5-3 Minimum Performance Limits for RF Output Frequencies of the AS210-06 5-6
5-4 Minimum Performance Limits for RF Output Level of the AS210-06 5-10
5-5 Required Test Equipment for +15 Volt Power Supply Alignment 5-13
5-6 Error Code Listing 5-15
5-7 Visual Indications 5-16

PREFACE

This manual contains the installation, operation, and maintenance instructions for the AS210-06 Microwave Frequency Generator Module . The data contained herein is arranged as follows:

Section 1 General Information
Section 2 Installation
Section 3 Operation
Section 4 Theory of Operation
Section 5 Maintenance and Calibration
Section 6 Illustrated Parts List

REFERENCE PUBLICATIONS

MODEL NO. PUBLICATION TITLE

AS210-PM Portable Mainframe Operation and Maintenance Manual AS210-RM, LM Mainframe Operation and Maintenance Manual AS210-01A Module Controller Operation and Maintenance Manual AS210-02 Frequency Comparator Operation and Maintenance Manual AS210-03 Frequency Generator Operation and Maintenance Manual AS210-04 Digital Delay Generator Operation and Maintenance Manual AS210-05 Standby Battery Operation and Maintenance Manual AS210-08 Distribution Amplifier Operation and Maintenance Manual AS210-20 Time Clock Operation and Maintenance Manual

SECTION 1

GENERAL INFORMATION

INTRODUCTION

The AS210-06 Microwave Frequency Generator Module, illustrated in Figure 1-1, is a modular plug-in unit used in the ARGOSystems AS210 Electronic Counter and Frequency Standard Calibration System. This module is used for testing the amplitude and frequency specifications of microwave frequency counters. It provides output frequencies from 1 to 18 GHz in 1 GHz increments with selectable output power levels from -5 to -35 dBm in 5 dB steps. An internal ALC circuit combined with the leveling detector at the end of a low-loss flexible microwave cable provides an output power-level accuracy at the load of better than +2 dB over a 30 dB dynamic range.

The AS210-06 is compatible with either the AS210A-PM Portable Mainframe, the AS210-RM Rackmount Mainframe, or the AS210-LM Laboratory Mainframe. The AS210-06 is programmable through the IEEE-488 interface in the AS210-01A Module Controller. Descriptions of other modules of the AS210 series are provided in separate publications referenced in the preface and available from ARGOSystems.

1.2
 PHYSICAL AND ELECTRICAL DESCRIPTION

The AS210-06 Microwave Frequency Generator Module is modularly constructed for insertion into a compatible AS210 mainframe. The module's front panel contains a thumbwheel switch for selection of operating frequency, a rotary switch for selection of output level, a CAL LED, a precision N output signal connector, and a BNC leveling signal connector.

Figure 1-1 AS210-06 Microwave Frequency Generator Module

Internally, the module consists of one each of the following:

- 1 GHz phase-locked oscillator (PLO)
- $1 \mathrm{GHz}, 1$ watt amplifier
- YIG tuned multiplier
- YIG coil driver
- Microwave switch
- Printed circuit card for control circuitry.

The 1 GHz PLO is phase-locked directly to the 10 MHz output frequency from the Rubidium frequency standard provided by the AS210 mainframe. The 1 GHz PLO has two outputs. The first is the RF sample port, which the microwave switch and control circuitry switches directly to the output connector of the module. The second output is the RF output port, which is amplified and delivered to the input YIG tuned multiplier. Harmonics of the 1 GHz input signal from 2 to 18 GHz are available at the output of the YIG tuned multiplier. The YIG coil driver selects the desired harmonic, which the microwave switch directs to the output connector of the module. At the output connector of the module, all 18 output frequencies from 1 to 18 GHz are available.

A 3-foot flexible cable assembly comprised of a low-loss microwave cable and BNC leveling cable is attached to the AS210-06. At the end of the low-loss cable assembly is a leveling detector. The leveling detector contains a 3 dB power divider and a microwave detector for the precision ALC loop. The final leveled output of the microwave frequency generator is the RF OUT port of the leveling detector.

The frequency and level controls are scanned periodically by the microprocessor in the AS210-01A Module Controller. The data is returned to the AS210-06 Microwave Frequency Generator Module in the form of commands for selecting operating points for the ALC and YIG tuning circuits. Table 1-1 is an equipment specification for the AS210-06 installed in a compatible AS210 Mainframe with the AS210-01A Module Controller.

Table 1-1
AS210-06 EQUIPMENT SPECIFICATIONS

FEATURES	VALUES
OUTPUT FREQUENCIES	
RANGE	1 to 18 GHz
STEP SIZE	1 GHz
FREQUENCY ACCURACY	
VS TEMPERATURE	$\pm 6 \times 10^{11}$ maximum
vS TIME	$\pm 2 \times 10^{11}$ per month
SPURIOUS	
SECOND HARMONIC	20 dB minimum below desired frequency output
THIRD- AND HIGHER-ORDER HARMONICS	30 dB minimum below desired frequency output
NONHARMONIC	30 dB minimum below desired frequency output
OUTPUT LEVELS	
RANGE	-5 to -35 dBm 1 to 8 GHz -10 to -35 dBm 8 to 12 GHz -15 to -35 dBm 12 to 18 GHz
STEP SIZE	5 dB
accuracy	$\pm 2 \mathrm{~dB}$
OUTPUT CHARACTERISTICS	
IMPEDANCE	50 ohms
VSWR	Less than 2:1
CONNECTOR	Precision N, male, at leveling head (3 -foot cable supplied to connect output to leveling head)
PHYSICAL CHARACTERISTICS	
OPERATING TEMPERATURE	+10 to $40^{\circ} \mathrm{C}$
SIZE	Single width plug-in
WEIGHT	6 lb .

SECTION 2
INSTALLATION

2.1 INTRODUCTION

The AS210-06 Microwave Frequency Generator Module plugs into a compatible AS210 Mainframe. The module is electrically connected through a rear edge connector and mechanically retained with a front panel locking bar.

NOTE

Abstract

Because of the high retention force of the rear card edge connector, the LEVEL switch knob may need to be pulled at the same time as the release mechanism is pulled, to remove the AS210-06 Microwave Frequency Generator Module from the mainframe (see Figure 3-1).

NOTE

The power in the AS210 Mainframe must be OFF when inserting or removing the AS210-06 Microwave Frequency Generator Module.

CAUTION

AS210 series plug-ins will not work in Tektronix TM-500 series mainframes. Severe damage will result if operation in this mode is attempted.

Power and signal interface is provided through the mainframe. The 3-foot, low-loss microwave cable assembly and leveling detector are connected as shown in Figure 2-1.

The flexible cable assembly and leveling head connect to the AS210-06 as shown in Figure 2-1.

NOTE

When installing the low-loss microwave cable assembly and ARGOSystems Leveling Detector, please observe the following:

1. The low-loss microwave cable has a minimum bend radius of 1.5 inches. If the cable is bent to less than the 1.5 inch minimum radius, the cable's electrical performance will be degraded, and failure could result.
2. The connector mating force for the Precision N connectors of the lowloss microwave cable should be 8 to 12 pounds.
3. Do not use the cable assembly as a handle.

Figure 2-1 Connect Diagram for AS210-06 3-Foot Low-Loss Cable Assembly and for Leveling Detector

SECTION 3

OPERATION

This section contains operation data and instructions for the AS210-06 Microwave Frequency Generator Module. Operator interface is provided through two controls, two connectors, and an LED on the front panel of the module. The AS210-06 is designed to be used with the AS210-01A Module Controller. However, this interface is transparent to the user of the AS210-06. The AS210-06 operating software, located in the AS210-01A, has a YIG filter calibration software routine that is executed upon detecting an unleveled output signal. This software routine will self-calibrate the YIG filter tuning in the AS210-06 during normal operating conditions. Section 5, Maintenance and Calibration, explains the self-diagnostic capability of the AS210-06 when used with the AS210-01A Module Controller.

3.2 CONTROLS AND CONNECTORS

Figure 3-1 is a front panel view of the AS210-06 Microwave Frequency Generator Module with indexed numbers keyed to Table 3-1. Figure 3-2 is a top view of the leveling detector showing connectors and indexed numbers keyed to Table 3-2.

3.3 OPERATING INSTRUCTIONS

The AS210-06 Microwave Frequency Generator Module is connected to the instrument under test via the RF OUT port located on the leveling detector assembly. The RF OUT port is a precision N male connector that will mate directly with the input connector found on most microwave counters used today. If the input connector of the instrument under test is not a type N female

Figure 3-1 AS210-06 Module Front Panel Controls and Connectors

Table 3-1
AS210-06 MODULE FRONT PANEL CONTROLS AND CONNECTORS

INDEX NUMBER (Figure 3-1)	PANEL MARKING	FUNCTION
1	FREQUENCY 1 to 18 GHz	Selects one of 18 standard frequencies: 1 to 18 GHz in 1 GHz increments. NOTE: 00 and 19 are not valid operating frequencies and will result in an error condition.
2	LEVEL (dBm)	Selects one of nine output levels: -5 to -35 dBm in 5 dB increments.
3	CAL	Calibration mode LED.
4	LEVELING	ALC return signal input from leveling detector (BNC cable).
5	OUTPUT	Module output connector to RF IN port on leveling detector (low-loss microwave cable).
6	None	Release mechanism.

Figure 3-2 AS210-06 Leveling Detector Connectors

Table 3-2
AS210-06 LEVELING DETECTOR CONNECTORS

INDEX NUMBER (Figure 3-2)	PANEL MARKING	FUNCTION
1	RF OUT	Output connector (to instrument under test)
2	LEVELING OUTPUT	ALC return signal to LEVELING BNC on AS210-06 front panel (BNC cable)
3	RF IN	Input connector from module output connector (low-loss microwave cable).

or precision type N female, then an appropriate between-series adapter will have to be used. Select the desired output frequency with the thumbwheel switch, and choose the required output level with the rotary switch. The CAL LED will flash approximately once per second if the YIG filter calibration routine has been initiated. When the AS210-06 Microwave Frequency Generator Module has recalibrated the output signal, the CAL LED will stop flashing and will remain off. The AS210-06 is now ready to perform the desired test. If the AS210-06 is not able to generate the desired output signal level, the CAL LED will stop flashing and will remain lit. The AS210-01A Module Controller will sense this fault and will display an error code. If this condition occurs, consult Section 5, Maintenance and Calibration.

SECTION 4
THEORY OF OPERATION

4.1 INTRODUCTION

This section provides a description of the circuits used in the AS210-06 Microwave Frequency Generator Module. The circuit description is keyed to the functional block diagram (Figure 4-1) and the schematic diagrams included in Section 5. Details of common type circuits (such as power supplies) are not included in this description.

4.2 OVERALL DESCRIPTION

The AS210-06 Microwave Frequency Generator Module consists of the front panel controls and connectors (A4), a control circuit card assembly (A2), and a microwave subsystem (A1, A5, A6, A7). Figure 4-1 is a functional block diagram of the module, depicting how the generator produces standard frequency outputs of 1 to 18 GHz in 1 GHz increments over a 30 dB dynamic range.

The AS210-06 front panel controls select the desired frequency and output level. These front panel controls are interrogated by the AS210-01A Module Controller via the microprocessor interface circuitry located on the control circuit card assembly (A2). The AS210-01A then reads two 12-bit words from the AS210-06, corresponding to the level and frequency desired.
NOTE

The calibration EPROM is matched to the AS210-06 module and the leveling detector and should not be interchanged with other

Figure 4-1 Microwave Frequency Generator Module Functional Block Diagram

Abstract

calibration EPROMs. Automatic calibration software and test fixture are available from ARGOSystems to calibrate and load EPROMs. Consult the factory for additional information.

The AS210-01A then loads these two words back to the AS210-06 control circuitry. If the AS210-01A determines that the AS210-06 is operating in an unleveled condition, the YIG filter tuning calibration software routine will find the new operating words for the AS210-06 and will reload this information to the control circuitry.

The control circuit card assembly consists of the microprocessor interface (A2U2, A2U4, A2U5, A2U7, A2U9, A2U10, A2U11, A2U12, A2U17), a calibration EPROM (A2U1), a frequency tune digital-to-analog converter (DAC) (A2U6), a frequency tune driver amplifier (A2U16), a level tune DAC (A2U3), an ALC amplifier (A2U13), a 1 GHz PLO unlocked detect comparator (A2U15), an ALC unleveled detect comparator (A2U14), a 10 MHz (A2Q3) amplifier for the 1 GHz reference frequency, and power supply circuitry (A2U18, A2U19).

The microwave subsystem consists of the 1 GHz PLO (A5), the 1 GHz 1 watt amplifier (A6), the YIG tuned multiplier (A7), a coaxial microwave switch, a DC block, a low-loss flexible cable assembly, and an ARGOSystems level detector. The level detector contains a 3 dB power divider and RF detector.

4.3
 FREQUENCY GENERATION CIRCUITRY

The output frequencies of the AS210-06 Microwave Frequency Generator Module are generated by the microwave subsystem (A1, A5 - A7) and selected by the control circuit card assembly (A2). The 10 MHz signal from the Rubidium frequency standard in the AS210 Mainframe is amplified on the control circuit card assembly (A2) and used as the reference frequency for the 1 GHz PLO (A5).

The 1 GHz PLO has two outputs. The first output is the RF sample port, which the microwave switch and control circuitry switches directly to the output connector of the module. The second output is the RF output port, which is amplified by the $1 \mathrm{GHz}, 1$ watt power amplifier (A6) and is used to drive the input port of the YIG tuned multiplier (A7).

The YIG tuned multiplier contains a step recovery diode (harmonic generator) matched to a YIG bandpass filter. Harmonics of the 1 GHz input signal from 2 to 18 GHz are available at the output of the YIG tuned multiplier, and the desired output signal is selected by the YIG coil driver: The frequency tune DAC (A2U6) located on the control circuit card assembly accepts the 12-bit frequency tuning word from the AS210-01A Module Controller and tunes the YIG coil driver to select the desired output harmonic. The 2 to 18 GHz band is switched to the module output connector by the microwave switch and control circuitry.

A DC block is included on the output of the microwave switch to prevent any low-level DC signals from feeding through to the output and offsetting the precision ALC circuitry.

The full 1 to 18 GHz output frequency range of the AS210-06 is available at the output connector of the module. The desired output signal is delivered to the level detector (A1) by a low-loss flexible cable. The level detector contains a 3 dB power divider and microwave detector. The output power is divided in half, with one portion being used as the output signal of the system and the other half being detected for the precision ALC circuitry.

4.4 LEVEL CONTROL CIRCUITRY

The precision ALC circuitry of the AS210-06 is located on the control circuit card assembly (A2). The level tune DAC (A2U3) accepts the 12-bit level tuning word from the module controller and creates a voltage
reference for the ALC amplifier (A2U13). The ALC amplifier (A2U13) is a precision operational amplifier designed to be an integrator. This amplifier drives a voltage-controlled attenuator located in the 1 GHz PLO (A5) in such a way as to make the detected RF power (a dc voltage) the same value as the voltage reference created by the level tune DAC (A2U3). The detected RF power is fed back from the level detector through a BNC cable to the input of the ALC amplifier on the control circuit card assembly.

4.5 SELF-TEST CIRCUITRY

Two self-test signals are available to the AS210-01A Module Controller via the AS210 Mainframe motherboard. The first is a 1 GHz PLO unlocked detect signal, which will be indicated as an error message on the AS210-01A display. The second is an ALC unleveled detect signal, which, if the AS210-06 is in the 2 to 18 GHz band, will initially start the YIG filter tuning calibration software routine in the AS210-01A. If the YIG filter tuning calibration fails to level the output power, an error message will be shown on the AS210-01A display. If the AS210-06 is in the 1 GHz band, the ALC unleveled detect signal will result in an error message on the AS210-01A display. Refer to Section 5, Maintenance and Calibration, for information about clearing any error messages while operating the AS210-06 Microwave Frequency Generator Module.

The AS210-06 leveling detector must be terminated into 50 ohms during self-test. If the unit is not terminated into 50 ohms, false error codes may result.

10×2000

SECTION 5

MAINTENANCE AND CALIBRATION

5.1 INTRODUCTION

This section provides maintenance and calibration data for the AS210-06 Microwave Frequency Generator Module. Part I covers routine preventive maintenance procedures. Part II outlines performance tests. Part III contains the calibration/ alignment procedures for the AS210-06, and Part IV describes troubleshooting data. Figures 5-4 and 5-5 are the schematic diagrams of the AS210-06. Please contact the factory for any assistance required in the maintenance or servicing of the AS210-06.

PART I

PREVENTATIVE MAINTENANCE

5.2 PREVENTIVE MANTENANCE CHECKS AND SERVICES

Table 5-1 lists preventive maintenance checks and services that should be performed regularly.

Table 5-1
PREVENTIVE MAINTENANCE CHECKS AND SERVICES

ITEM	PROCEDURE
CABLES	Visually inspect cables for strained, cut, frayed, or otherwise damaged insulation. Make sure the exterior surfaces of the unit are clean. If necessary, clean exterior surfaces as follows: a. Using a clean, soft cloth, remove the dust and loose dirt.
b. Using a brush, remove dust or dirt from plugs	
and jacks.	

PART II
PERFORMANCE TESTING

5.3 OVERVIEW

Part II describes the procedure to test the AS210-06 Microwave Frequency Generator Module to ensure proper performance of the instrument. The AS210-06 must be used in conjunction with the AS210-01A Module Controller because the CPU in the AS210-01A monitors the controls and output of the AS210-06. The AS210-06 will not operate without the AS210-01A installed. If the AS210-06 fails any of these performance tests, please see Part III, Calibration/Alignment Procedures, or Part IV, Troubleshooting Procedures.

5.4 RF OUTPUT FREQUENCY PERFORMANCE TEST

The following is a procedure for testing the 18 selectable output frequencies of the AS210-06 Microwave Frequency Generator Module. Table 5-2 contains the required equipment to perform this test.

Table 5-2
REQUIRED TEST EQUIPMENT FOR THE INTERNAL FREQUENCY STANDARD ACCURACY TEST

ITEM	RECOMMENDED TEST EQUIPMENT
MICROWAVE ELECTRONIC	EIP 548 or Hewlett-Packard
FREQUENCY COUNTER	$5342 A$ or 5343 A
COAXIAL CABLE	3 ft long, 50 ohm, BNC

A. Ensure that power is disconnected from the AS210 system before beginning this procedure.
B. Connect the equipment as indicated in Figure 5-1, and apply power to the AS210. The Rubidium frequency standard in the AS210 system will require 20 minutes warm-up time to reach the specified frequency accuracy.
C. Select the -15 dBm output power level on the AS210-06 front panel. Starting with 1 GHz dialed into the thumbwheel switch for the output frequency, compare the frequency displayed by the microwave counter to Table 5-3 to verify that the output frequency is within the acceptable frequency range for 1 GHz . Continue this process through the remaining 17 output frequencies available from the AS210-06. If any of the frequencies fall out of the limits for acceptable performance, please see Part III, Calibration/Alignment Procedures, or Part IV, Troubleshooting Procedures.
D. Disconnect the microwave frequency counter from the AS210-06.

5.6 RF OUTPUT LEVEL PERFORMANCE TEST

The following is a procedure for testing the seven RF output levels for each of the 18 selectable output frequencies of the AS210-06. The footnotes to Table 5-4 give the required equipment for this performance test.

Figure 5-1 AS210-06 Microwave Frequency Generator Module RF Output Frequency Test Configuration

Table 5-3
MINIMUM PERFORMANCE LIMITS FOR RF OUTPUT FREQUENCIES OF THE AS210-06

FREQUENCY (GHz)	ACCEPTABLE FREQUENCY RANGE
1	$1,000,000,000 \mathrm{~Hz} \pm 1 \mathrm{~Hz}$
2	$2,000,000,000 \mathrm{~Hz} \pm 1 \mathrm{~Hz}$
3	$3,000,000,000 \mathrm{~Hz} \pm 1 \mathrm{~Hz}$
4	$4,000,000,000 \mathrm{~Hz} \pm 1 \mathrm{~Hz}$
5	$5,000,000,000 \mathrm{~Hz} \pm 1 \mathrm{~Hz}$
6	$6,000,000,000 \mathrm{~Hz} \pm 1 \mathrm{~Hz}$
7	$7,000,000,000 \mathrm{~Hz} \pm 1 \mathrm{~Hz}$
8	$8,000,000,000 \mathrm{~Hz}+1 \mathrm{~Hz}$
9	$9,000,000,000 \mathrm{~Hz} \pm 1 \mathrm{~Hz}$
10	$10,000,000,000 \mathrm{~Hz} \pm 1 \mathrm{~Hz}$
11	$11,000,000,000 \mathrm{~Hz} \pm 1 \mathrm{~Hz}$
12	$12,000,000,000 \mathrm{~Hz} \pm 1 \mathrm{~Hz}$
13	$13,000,000,000 \mathrm{~Hz} \pm 1 \mathrm{~Hz}$
14	$14,000,000,000 \mathrm{~Hz} \pm 1 \mathrm{~Hz}$
15	$15,000,000,000 \mathrm{~Hz} \pm 1 \mathrm{~Hz}$
16	$16,000,000,000 \mathrm{~Hz} \pm 1 \mathrm{~Hz}$
17	$17,000,000,000 \mathrm{~Hz} \pm 1 \mathrm{~Hz}$
18	$18,000,000,000 \mathrm{~Hz} \pm 1 \mathrm{~Hz}$

5.7 TEST PROCEDURE

A. Ensure that power is disconnected from the AS210 system and the HP power meter before beginning this procedure.
B. Connect the equipment as indicated in Figure 5-2. Use an HP8481A Power Sensor as the power head. Turn power on to the AS210 system and the HP power meter. Wait for the AS210-01A Module Controller to display SEL?. If the AS210-01A responds with an error message, consult Part III, Calibration/ Alignment Procedures, or Part IV, Troubleshooting Procedures. Note that ERR $0-00$ indicates that the Rubidium frequency standard in the AS210 system is not phase locked and will require a maximum of 20 minutes warm-up time to achieve phase lock.
C. Starting with 1 GHz as the selected output frequency of the AS210-06 and -5 dBm as the desired output level, the microwave power meter should read between -3 and -7 dBm for acceptable performance. Next, change the output frequency to 2 GHz and repeat the measurement. Continue this process through 8 GHz .
D. Return the output frequency to 1 GHz . Change the output level to -10 dBm . The microwave power meter should read between -8 and -12 dBm . Repeat this procedure through 12 GHz .
E. Return the output frequency to 1 GHz . Change the output level to -15 dBm . The microwave power meter should read between -13 and -17 dBm . Repeat this procedure through 18 GHz .
F. Turn power off to both the HP power meter and the AS210 system.

Figure 5-2 AS210-06 Microwave Frequency Generator Module RF Output Level Test Configuration
G. Connect the equipment as indicated in Figure 5-2. Use an HP8484A Power Sensor as the power head. Turn power on to the AS210 system and the HP power meter. Wait for the AS210-01A Module Controller to display SEL?. If the AS210-01A responds with an error message, consult Part III, Calibration/ Alignment Procedures, or Part IV, Troubleshooting Procedures. Note that ERR 0-00 indicates that the Rubidium frequency standard in the AS210 system is not phase locked and will require a maximum of 20 minutes warm-up time to achieve phase lock.
H. Turn the output frequency to 1 GHz . Change the output level to -20 dBm . The microwave power meter should read between -18 and -22 dBm . Repeat this procedure through 18 GHz .
I. Return the output frequency to 1 GHz . Change the output level to -25 dBm . The microwave power meter should read between -23 and -17 dBm . Repeat this procedure through 18 GHz .
J. Return the output frequency to 1 GHz . Change the output level to -30 dBm . The microwave power meter should read between -28 and -32 dBm . Repeat this procedure through 18 GHz .
K. Return the output frequency to 1 GHz . Change the output level to -35 dBm . The microwave power meter should read between -33 and -37 dBm . Repeat this procedure through 18 GHz .
L. Table 5-4 is a listing of the minimum performance limits for the RF output level measurements of the AS210-06. If any of the levels fall out of the range for acceptable performance, see Part III, Calibration/Alignment Procedures or Part IV, Troubleshooting Procedures.
M. Disconnect the microwave power meter from the AS210-06.
Table 5-4
MINIMUM PERFORMANCE LIMITS FOR RF OUTPUT LEVEL OF THE AS210-06

OUTPUT FREQUENCY (GHz)	$-5 \mathrm{dBm}{ }^{*}$		$-10 \mathrm{dBm}{ }^{*}$		$-15 \mathrm{dBm}^{*}$		$-20 \mathrm{dBm}{ }^{\dagger}$		$-25 \mathrm{dBm}{ }^{\dagger}$		$-30 \mathrm{dBm} \dagger$		-35 idBm ${ }^{\dagger}$	
	MIN (dB)	MAX (dB)	MIN (dB)	MAX (dB)	$\begin{aligned} & \text { MIN } \\ & (d B) \end{aligned}$	MAX (dB)	$\begin{aligned} & \text { MIN } \\ & (\mathrm{dB}) \end{aligned}$	$\begin{aligned} & \text { MAX } \\ & (\mathrm{dB}) \end{aligned}$	$\begin{aligned} & \text { MIN } \\ & (\mathrm{dB}) \end{aligned}$	$\begin{aligned} & \operatorname{MAX} \\ & (\mathrm{dB}) \end{aligned}$	MIN (dB)	$\begin{aligned} & \operatorname{MAX} \\ & (\mathrm{dB}) \end{aligned}$	MIN: (dB)	
1	-7	-3	-12	-8	-17	-13	-22	-18	-27	-23	-32	-28	-37	-
2	-7	-3	-12	-8	-17	-13	-22	-18	-27	-23	-32	-28		
3	-7	-3	-12	-8	-17	-13	-22	-18	-27	-23	-32	-28	-37	${ }_{3}^{3}-33$
4	-7	-3	-12	-8	-17	-13	-22	-18	-27	-23	-32	-28	-37*	-33
5	-7	-3	-12	-8	-17	-13	-22	-18	-27	-23	-32	-28	-37	-33
6	-7	-3	-12	-8	-17	-13	-22	-18	-27	-23	-32	-28	-37	-33
7	-7	-3	-12	-8	-17	-13	-22	-18	-27	-23	-32	-28	-37	-33
8	-7	-3	-12	-8	-17	-13	-22	-18	-27	-23	-32	-28	-37	-33
9	-	-	-12	-8	-17	-13	-22	-18	-27	-23	-32	-28	-37	-33
10	-	-	-12	-8	-17	-13	-22	-18	-27	-23	-32	-28	-37	-33
11	-	-	-12	-8	-17	-13	-22	-18	-27	-23	-32	-28	-37	-33
12	-	-	-12	-8	-17	-13	-22	-18	-27	-23	-32	-28	-37	-33
13	-	-	-	-	-17	-13	-22	-18	-27	-23	-32	-28	-37	-33
14	-	-	-	-	-17	-13	-22	-18	-27	-23	-32	-28	-37	-33
15	-	-	-	-	-17	-13	-22	-18	-27	-23	-32	-28	-37	-33
16	-	-	-	-	-17	-13	-22	-18	-27	-23	-32	-28	-37	-33
17	-	-	-	-	-17	-13	-22	-18	-27	-23	-32	-28	-37	-33
18	-	-	-	-	-17	-13	-22	-18	-27	-23	-32	-28	-37	-33

PART III
CALIBRATION/ALIGNMENT PROCEDURES

5.8 OVERVIEW

WARNING

The following calibration/alignment procedures (Section 5, Part III) and Troubleshooting Procedures (Section 5, Part IV) are for use by qualified personnel only. To avoid personal injury, do not perform any servicing other than that of routine maintenance (Section 5, Part I) and performance testing (Section 5, Part II) unless you are qualified to do so.

Figure $5-3$ is a flow diagram of the Calibration/Alignment Procedure for the AS210-06 Microwave Frequency Generator Module. Use this flow diagram with the theory of operation in Section 4, the text in this section, and the illustrated parts lists in Section 6. The AS210 internal frequency standard calibration data, contained in the AS210 mainframe operation and maintenance manual, is also referenced in this flow diagram. Note that the AS210 system need not be disassembled to determine if calibration/alignment is necessary. For any assistance needed in performing this calibration/alignment procedure, please contact the factory.

5.9 ACCESS TO AS210-06 MICROWAVE FREQUENCY GENERATOR MODULE

Please refer to the AS210 mainframe manual for the AS210 system disassembly procedure allowing access to the AS210-06 Microwave Frequency Generator Module. Access to the module circuitry itself is gained by using a small straight-blade screwdriver to remove the two metal sidecovers. Place the module on one of its sides so that one cover is facing up.

Figure 5-3 Flow Diagram of the Calibration/Alignment Procedure for the AS210-06 Microwave Frequency Generator Module

Starting with the end toward the edge connector, insert the screwdriver into one of the slots where the cover mates with the module chassis, and pry the cover up. You must move along the slot toward the front panel of the module and repeat the prying action to loosen the side of the cover from the module. Repeat this technique to free the other side cover from the chassis. Set the free cover clear of the module, and flip the module over so that the second cover is now facing up. Repeat the above procedure to free this cover.

$5.10 \quad+15 \mathrm{~V}$ POWER SUPPLY ALIGNMENT

The AS210-06 has two adjustable vol tage supplies on the control circuit card. Table 5-5 lists the test equipment recommended to align the ± 15 volt supplies. To align the voltages' supplies, use the following procedure:
A. Obtain access to the AS210-06 by using the procedure described in Section 5-9.
B. Monitor the +15 volt supply with the digital voltmeter (DVM) at test point 15 V on A 2.
C. Adjust A2R28 until the DVM reads $+15+0.25$ volt.
D. Monitor the -15 volt supply with the DVM at test point 15 V on A2.
E. Adjust A2R31 until the DVM reads $-15+0.25$ volt.
F. Remove the DVM, and reassemble the AS210-06.

Table 5-5
REQUIRED TEST EQUIPMENT FOR +15 VOLT POWER SUPPLY ALIGNMENT

ITEM	RECOMMENDED TEST EQUIPMENT
DIGITAL VOLTMETER	Hewlett-Packard 3455A

PART IV
 TROUBLESHOOTING PROCEDURES

5.15

OVERVIEW

Troubleshooting the AS210-06 Microwave Frequency Generator Module is facilitated by a combination of error codes displayed on the module controller display and by LED indicators on the control circuit card assembly, A2. The control circuit card is illustrated in Figure 6-3. Table 5-6 correlates the error code, displayed on the module controller when a fault occurs, to the malfunction. An explanation of the problem is provided with possible solutions. Table 5-7 is a list of visual indicators on Circuit Card A2 and of the indicators' meaning. Figures 5-4 and 5-5 are the schematic diagrams of the AS210-06. For further assistance, contact the factory.

NOTE

The AS210-06 leveling detector must be terminated into 50 ohms during self-test.
If the unit is not terminated into 50 ohms, false error codes may result.

Table 5-6
ERROR CODE LISTING

ERROR CODE	PROBLEM	RECOMMENDED SOLUTION
ERR 6-00	Frequency not available	Select proper output frequency.
ERR 6-0X	No leveling loop indication at frequency X $\begin{array}{cc} x=1 & 1 \mathrm{GHz} \\ X=2 & 2 \mathrm{GHz} \\ X=3 & 3 \mathrm{GHz} \\ : & \vdots \\ \dot{\cdot} & \\ x=9 & 9 \dot{\mathrm{GHz}} \end{array}$	The AS210-06 may require 10 minutes warm-up time to stabilize the YIG multiplier and associated circuitry. After 10 minutes warm-up, initiate self-test from the front panel of the AS210-01A Module Controller. If the same error condition occurs during or after self-test, or both, then check the ALC circuitry A2U3, A2U13, A2U14, A2Q1, and A2Q2. Al so check the microwave switch control circuitry A2U11 and A2U17.
ERR 6-1X	No leveling loop indication at frequency X $\begin{array}{cc} X=0 & 10 \mathrm{GHz} \\ X=1 & 11 \mathrm{GHz} \\ X=2 & 12 \mathrm{GHz} \\ \cdot & \cdot \\ \cdot & \cdot \\ \cdot & \cdot \\ X=8 & 18 \mathrm{GHz} \end{array}$	Same as ERR 6-0x.
ERR 6-30	1 GHz source not locked	Check 10 MHz amplifier A2Q3; output should be approximately 0 dBm .
ERR 6-40	Calibration in progress	None. Let calibration routine finish.
ERR 6-50	Unable to level, and level chosen is greater than guaranteed by performance specifications	Select proper output power level.

Table 5-7
VISUAL INDICATIONS

INDICATOR	PROBLEM	RECOMMENDED SOLUTION
A2CR1	ALC Unleveled	Check A2U3, A2U13, A2Q1, A2Q2, A2U14, and A2U16.
CALCR2 LED (Front Panel)	PLO Unlocked Calibration Program Initiated	Check A2Q3 and A2U15. formal operation; see Section 3

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

SECTION 6
 ILLUSTRATED PARTS LISTS

6.1 INTRODUCTION

This section contains illustrated parts lists for the AS210-06 Microwave Frequency Generator Module. The assembly number and assembly title are listed at the top of each parts list. The parts lists are divided into six columns and arranged in the following order:

Column 1 - Item Number
Column 2 - Quantity per Assembly.
Column 3 - Manufacturer's Code
Column 4 - Part Number
Column 5 - Description
Column 6 - Reference Designation

Figure 6-1 AS210-06 Module Showing Control Circuit and Assembly

Figure 6-2 AS210-06 Module Showing Microwave Subsystem

PARTS LIST NUMBER 125520 - AS210-06 MICROWAVE FREQUENCY GENERATOR MODULE

ITEM	QTY	"MANOFAC'TURER'S CODE	PART NUMBER	DESCRIPTION	REF. DESIG.
1	-	33472	125521	Module Schematic	
2	-	33472	125522	Drawing Tree	
3	1	33472	125525	YIG Tuned Multiplier	A7, A8
4	1	33472	125530	Power Amplifier, 1 GHz	A6
5	1	33472	125538	BNC Cable, 36 in.	
6	1	33472	125535	Oscillator, PhaseLocked, 1 GHz	A5
7	1	-----	$\begin{aligned} & 104 \mathrm{~A} / 91 / 44 \mathrm{CM} / \\ & 11 \mathrm{~N} / 11 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { Cable, Flex, Low-Loss, } \\ & 3 \mathrm{ft} \text {. } \end{aligned}$	
8	1	33472	125526	Cable Assy., Microwave	
9	1	33472	125527	Cable Assy., Microwave	
10	1	33472	125528	Cable Assy., Microwave	
11	1	33472	125529	Cable Assy., Microwave	
12	1	33472	125531	Cable Assy., Microwave	
13	1	33472	125536	$\begin{aligned} & \text { Cable Assy., } \\ & 10 \mathrm{MHz} \end{aligned}$	
14	1	33472	$\begin{aligned} & 117200-01, \\ & \text { Rev. A } \end{aligned}$	Plate, Mounting	
15	1	54487	RSM-2-D	Switch, SPDT, Microwave	Failsafe A9
16	1	33472	125532	Spacer, Mounting, YIG MULT/RF Switch	
17	1	33472	125533	Bracket, Mounting, YIG MULT/RF Switch	
18	1	33472	125534	Spacer, Mounting, 1 GHz Amp/YIG MULT/ Driver	

PARTS LIST NUMBER 125520 - AS210-06 MICROWAVE FREQUENCY GENERATOR MODULE (Continued)

ITEM	QTY	MANUFACTURER'S CODE	PART NUMBER	DESCRIPTION	REF. DESIG.
19	1	33472	125540	Leveling Head Assy.	A1
20	1	33472	125575	Circuit Card Assy., Control	A2
21	1	33472	125584	Wire Assy., Chassis	A3
22	1	33472	125580	Front Panel Assy.	A4
23	8	06383	SSB25-C0	Sta-Strap Bow-Ty	
24	1	33472	125585	Frame Section, Top	
25	1	33472	125586	Frame Section, Bottom	
26	2	81349	M535338-135	Washer, Lock, \#4	
27	2	81349	NAS620-C4	Washer, Flat, Red. 0/D, \#4	
28	2	33472	125583	Spacer Mounts for Board	
29	4	81349	MS24693-C25	$\begin{aligned} & \text { Screw, Fhd., \#6-32 } \\ & \times 5 / 16 \mathrm{in} . \end{aligned}$	
30	2	81349	MS24693-C1	$\begin{aligned} & \text { Screw, Fhd., \#4-40 } \\ & \times 3 / 16 \mathrm{in} . \end{aligned}$	
31	14	81349	MS24693-C23	$\begin{aligned} & \text { Screw, Fhd., \#6-32 } \\ & \times 3 / 16 \mathrm{in} . \end{aligned}$	
32	2	81349	MS51957-13	$\begin{aligned} & \text { Screw, Phd., \#4-40 } \\ & \times 1 / 4 \text { in. } \end{aligned}$	
33	1	80009	214-1061-00	Spring, Tension	
34	2	80009	386-3657-01	Pin, Guide	

PARTS LIST NUMBER 125526 - AS210-06 MICROWAVE CABLE ASSY.

ITEM	QTY	MANUFAC- TURER'S CODE	PART NUMBER	DESCRIPTION	REF. DESIG.
1	2	16733	527-001	$\begin{aligned} & \text { Connector, } 0.141, \\ & \text { Semi-Rigid SMA } \end{aligned}$	
2	3 in.	93306	UT-141-CTP	Cable, Coaxial, 0.141, Semi-Rigid	

PARTS LIST NUMBER 125527 - AS210-06 MICROWAVE CABLE ASSY.

ITEM	QTY	MANUFAC- TURER'S CODE	PART NUMBER	DESCRIPTION	REF. DESIG.
1	2	16733	527-001	$\text { Connector, } 0.141$ Semi-Rigid SMA	
2	3 in.	93306	UT-141-CTP	Cable, Coaxial, 0.141, Semi-Rigid	

PARTS LIST NUMBER 125528 - AS210-06 MICROWAVE CABLE ASSY.

ITEM	QTY	MANUFAC TURER'S CODE	PART NUMBER	DESCRIPTION	REF. DESIG.
1	2	98291	55-628-9188-31	Connector, SMA, Right Angle	
2	6 in.	81349	RG316/U	Cable, Coaxial, 50 ohm	
3	1	26805	2031-5003-00	Connector, SMA, Straight	

PARTS LIST NUMBER 125529 - AS210-06 MICROWAVE CABLE ASSY.

ITEM	QTY	MANUFACTURER'S CODE	PART NUMBER	DESCRIPTION	REF. DESIG.
1	2	98291	55-628-9188-31	Connector, SMA, Right Angle	
2	6 in.	81349	RG316/U	Cable, Coaxial, 50 ohm	
3	1	26805	2031-5003-00	Connector, SMA, Straight	

PARTS LIST NUMBER 125531 - AS210-06 MICROWAVE CABLE ASSY.

ITEM	QTY	MANUFAC- TURER'S CODE	PART NUMBER	DESCRIPTION	REF. DESIG.
1	2	98291	55-628-9188-31	Connector, SMA, Right Angle	
2	6 in.	81349	RG316/U	Cable, Coaxial, 50 ohm	

PARTS LIST NUMBER 125536 - AS210-06 10 MHz CABLE ASSY.

ITEM	QTY	MANUFAC- TURER'S CODE	PART NUMBER	DESCRIPTION	REF. DESIG.
1	1	98291	50-628-9188-31	Connector, SMA, Right Angle	
2	1	98291	51-328-3188	Connector, SMA, Right Angle	
3	6 in.	81349	RG316/U	Cable, Coaxial, 50 ohm	

PARTS LIST NUMBER 125540 - AS210-06 LEVELING DETECTOR ASSY., A1

ITEM	QTY	MANUFACTURER'S CODE	PART NUMBER	DESCRIPTION	REF. DESIG.
1	-	33472	125541	Schematic Diagram, Al	
2	-	33472	125542	Silkscreen, Al	
3	1	33472	125545	Case, Leveling Head	
4	2	33472	125546	Cover, Leveling Head	
5	1	10017	DMS285-18	$\begin{aligned} & 3 \mathrm{~dB} \text { Power Divider, } \\ & 1 \text { to } 18 \mathrm{GHz} \end{aligned}$	
6	1	54893	33330B	Detector (Neg.), 0.01 to 18 GHz	
7	1	98291	50-675-6701-89	Panel Mount, PN/F to SMA/F	
8	1	98291	50-677-6700-89	Panel Mount, PN/M to SMA/F	
9	2	26805	2081-0000-00	Barrel, SMA/M to SMA/M	
10	1	95077	2994-6002	Swept Right Angle, SMA/M to SMA/F	
11	1	89709	74868-UG-1094AU	BNC, Jack, Panel	
12	1	83330	1497	Solder Lug	
134	4 in.	81349	RG178B/U	Cable, DC Return	
14	1	98291	50-311-3196	Connector, Conhex RF, DC Return	
15	16	81349	- - -	Screw, Fhd., Cover, \#0-80 x 3/16 in.	
16	8	81349	MS51957-16	$\begin{aligned} & \text { Screw, Phd., \#4-40 } \\ & \times 7 / 16 \mathrm{in.} \end{aligned}$	
17	8	81349	NAS620-C4	Washer, Flat, Red. 0/D, \#4	
18	8	81349	MS35338-135	Washer, Split-Lock, \#4	
19	8	81349	NAS671-C4	Nut, Hex, Sm. Pat., \#4	

PARTS LIST NUMBER 125540 - AS210-06 LEVELING DETECTOR ASSY., A1 (Continued)

ITEM	QTY	MANUFAC- TURER'S CODE	PART NUMBER	DESCRIPTION
20	2	02114	56-590-65/3B	Ferrite Beads
21	1	26805	2001-5032-00	Connector, Straight, OSM
22	1	26805	2007-5055-00	Connector, Right Angle, OSM
23	A/R	81349	UT-141-CPT	$\begin{aligned} & \text { Cable, } 0.141, \\ & \text { Semi-Rigid } \end{aligned}$
24	1	26805	2080-0000-00	Connector, Barrel, SMA/F to SMA/F
25	1	34078	3510	Block, DC

PARTS LIST NUMBER 125538 - AS210-06 BNC CABLE

ITEM	QTY	MANUFACTURER'S CODE	PART NUMBER	DESCRIPTION	REF. DESIG.
1	-	33472	125338	Fabrication Drawing	
2	2	91836	KC-59-123	Connector, BNC, Male	
3	A/R	16428	RG-58C/4	Cable, 50 ohm	
4	2	05276	5155-0	Boot, Strain Relief	

Figure 6-3 AS210-06 Control Circuit Card (A2) Assembly Diagram

PARTS LIST NUMBER 125575 - AS210-06 CONTROL CIRCUIT CARD ASSY., A2 (SEE FIGURE 6-3 FOR ASSEMBLY DIAGRAM)

ITEM	QTY	MANUFACTURER 'S CODE	PART NUMBER	DESCRIPTION	REF. DESIG.
1	-	33472	125576	Schematic Diagram, A2	
2	-	33472	125577	Master Pattern, A2	
3	-	33472	125578	Fabrication Drawing PWB, A2	
4	-	33472	125579	Silk Screen, A2	
5	1	33472	125578	PWB, A2	
7	8	56289	300-50-601-105M	Capacitor, 1.0 microfd., 20\%, Ceramic	$\begin{aligned} & \mathrm{C} 1, \mathrm{C} 2-\mathrm{C} 4, \\ & \mathrm{C} 6, \mathrm{C} 12-\mathrm{C} 15 \end{aligned}$
8	1	81349	CK05BX101K	Capacitor, 100 picofd., 10\%, Ceramic	C5
9	3	81349	CK05BX104K	$\begin{aligned} & \text { Capacitor, } 0.1 \text { microfd., } \\ & 10 \% \text {, Ceramic } \end{aligned}$	C7, C8, C11
10	1	81349	CK05BX271K	Capacitor, 270 picofd., 10\%, Ceramic	C9
11	1	81349	CM04F0820, 03	Capacitor, 82 picofd., Dipped Silver Mica	C10
12	2	56289	196D156X9020KA1	```Capacitor, 15 microfd., 20V, Tant.```	C19, C20
13	2	56289	1960156X9035PE4	```Capacitor, 15 microfd., 35V, Tant.```	C16, C 17
14	2	54893	5082-4487	LED, Clear	CR1, CR2
15	1	81349	1N3064	Diode	CR3
16	1	27264	22-03-2091	Connector, 9-Pin	J2
17	2	27264	22-03-2051	Connector, 5-Pin	J3, J4
18	2	98291	51-051-0000	$\begin{aligned} & \text { Connector, RF, Conhex, } \\ & \text { Snap-On } \end{aligned}$	J4, J6
19	1	00213	35F1863	Inductor, Fixed, 3.3 microhenry,	L1
20	2	81349	RNC55H49R9FS	Resistor, Metal Film, $49.9 \mathrm{ohm}, 1 \%, 1 / 8 \mathrm{~W}$	R1, R2
21	1	18612	S102K,61	Resistor, Precision, 61 ohm, 1\%	R3

PARTS LIST NUMBER 125575 - AS210-06 CONTROL CIRCUIT CARD ASSY., A2 (Continued) (SEE FIGURE 6-3 FOR ASSEMBLY DIAGRAM)

ITEM	QTY	MANUFAC- TURER'S CODE	PART NUMBER	DESCRIPTION	REF. DESIG.
22	1	18612	S102K, 18.9K	$\begin{aligned} & \text { Resistor, Precision, } \\ & 18.9 \mathrm{k}, 1 \% \end{aligned}$	R4
23	2	73138	66WR20K	Resistor, Variable, 20k ohm	R5, R20
24	1	81349	RCR05G103JS	Resistor, Carbon Comp., 10k ohm, $5 \%, 1 / 8 \mathrm{~W}$	R6
25	1	81349	RCR05G113JS	Resistor, Carbon Comp., 11 k ohm, $5 \%, 1 / 8 \mathrm{~W}$	R14
26	1	81349	RCR05G470JS	Resistor, Carbon Comp., 47 ohm, 5\%, 1/8W	R7
27	1	81349	RCR05G152JS	Resistor, Carbon Comp., 1.5 k ohm, $5 \%, 1 / 8 \mathrm{~W}$	R8
28	1	81349	RCR05G333JS	Resistor, Carbon Comp., 33k ohm, 5%, $1 / 8 \mathrm{~W}$	R34
29	1	81349	RCR05G472JS	Resistor, Carbon Comp., 4.7k ohm, 5\%, 1/8W	R9
30	1	18612	S102K,15K	Resistor, Precision, 15k ohm, 1%	R10
31	3	81349	RCR05G102JS	Resistor, Carbon Comp., 1k ohm, 5%, 1/8W	R11, R12, R23
32	1	81349	RCR05G620JS	Resistor, Carbon Comp., 62 ohm, $5 \%, 1 / 8 \mathrm{~W}$	R15
33	1	81349	RCR05G912JS	$\begin{aligned} & \text { Resistor, Carbon Comp., } \\ & 9.1 \mathrm{k} \text { ohm, } 5 \%, 1 / 8 \mathrm{~W} \end{aligned}$	R16
34	1	81349	RNC55H111FC	Resistor, Metal Film, 5.11k ohm, 1\%, 1/8W	R18
35	1	81349	RCR05G392JS	$\begin{aligned} & \text { Resistor, Carbon Comp., } \\ & 3.9 \mathrm{k} \text { ohm, } 5 \%, 1 / 8 \mathrm{~W} \end{aligned}$	R13
36	1	81349	RCR05G242JS	$\begin{aligned} & \text { Resistor, Carbon Comp., } \\ & 2.4 \mathrm{k} \text { ohm, } 5 \%, 1 / 8 \mathrm{~W} \end{aligned}$	R19
37	1	18612	S102K, 3.9K	$\begin{aligned} & \text { Resistor, Precision, } \\ & 3.9 \mathrm{k} \text { ohm, } 1 \%, 1 / 8 \mathrm{~W} \end{aligned}$	R21

PARTS LIST NUMBER 125575 - AS210-06 CONTROL CIRCUIT CARD ASSY., A2 (Continued) (SEE FIGURE 6-3 FOR ASSEMBLY DIAGRAM)

ITEM	QTY	MANUFAC- TURER'S CODE	PART NUMBER	DESCRIPTION	REF. DESIG.
38	4	81349	RCR05G471JS	Resistor, Carbon Comp., $470 \text { ohm, } 5 \%, 1 / 8 \mathrm{~W}$	$\begin{aligned} & \text { R22, R24, } \\ & \text { R25, R32 } \end{aligned}$
39	2	81349	RNC55H1210FS	Resistor, Metal Film, 121 ohm, $1 \%, 1 / 8 \mathrm{~W}$	R26, R29
40	2	81349	RNC55H1301FS	Resistor, Metal Film, 1.30k ohm, $1 \%, 1 / 8 \mathrm{~W}$	R27, R30
41	2	32997	3386T-01-201	Resistor, 200 ohm, Pot., Side Adjust	R28, R31
42	2	81349	RCR05G302JS	Resistor, Carbon Comp., 3k ohm, 5\%, 1/8W	R17, R33
43	1	81349	RCR05G100JS	Resistor, Carbon Comp., 10 ohm, $5 \%, 1 / 8 \mathrm{~W}$	R35
44	1	34649	D2716	IC, EPROM, 2k x 8	U1
45	1	01295	74LS273	$\begin{aligned} & \text { IC, Octal "D", } \\ & \text { Flip-Flop } \end{aligned}$	U1
46	2	24355	AD567KD	IC, D/A Converter, 12-Bit	U3, U6
47	2	34694	P8216	IC, Bidirectional Bus Driver	U4, U5
48	1	01295	74LS125	IC, Quad Bus Buffer	U7
49	1	01295	74LS20	IC, NAND, Quad 4-Input	U8
50	2	01295	74LS138	IC, 3 to 8 Decoder	U9, U12
51	1	01121	110A473	Resistor Network, 4.7k ohm	U10
52	1	01295	74LS175	$\begin{aligned} & \text { IC, Hex "D", } \\ & \text { Flip-Flop } \end{aligned}$	U11
53	2	31148	OP-05-EP	IC, Op. Amp., Precision	U13, U16
54	2	27014	LM319N	IC, Dual Comparator	U14, U15
55	1	27014	DS3686N	IC, Dual Relay Driver	U17
56	1	27014	LM317T	IC, Voltage Regulator, Adj. Positive	418
57	1	27014	LM337T	IC, Voltage Regulator, Adj. Positive	419

PARTS LIST NUMBER 125575 - AS210-06 CONTROL CIRCUIT CARD ASSY., A2 (Continued) (SEE FIGURE 6-3 FOR ASSEMBLY DIAGRAM)

ITEM	QTY	MANUFACTURER'S CODE	PART NUMBER	DESCRIPTION	REF. DESIG.
58	1	81349	2N2222A	Transistor, NPN	Q1
59	1	81349	TIP31	Transistor, NPN	Q2
60	1	81349	2N5089	Transistor, NPN	Q3
61	3	01295	C9308-02	Socket, IC, 8-Pin	
62	4	01295	C9314-02	Socket, IC, 14-Pin	
63	5	01295	C9316-02	Socket, IC, 16-Pin	
64	1	01295	C9320-02	Socket, IC, 20-Pin	
65	1	01295	C9324-02	Socket, IC, 24-Pin	
66	2	01295	C9328-02	Socket, IC, 28-Pin	

PARTS LIST NUMBER 125580 - AS210-06 FRONT PANEL ASSY., A4

MANUFACTURER'S

ITEM	QTY	CODE	PART NUMBER	DESCRIPTION	REF. DESIG.
1	1	33472	125572	Switch, Rotary Thumbwheel	S1
2	1	98291	50-675-6701-89	```Panel Mount, PN/F to SMA/F```	
3	1	89709	31-10	Connector, Bulkhead, Insulated, BNC to Solder Pot	
4	A/R	16428	24AWG	Wire, 24-AWG	
5	1	11237	14738-01	Switch, Rotary	
6	1	33472	125582-01	Panel, Lexan	
7	1	33472	125582-02	Front Panel, Plastic	
8	1	33472	125582-03	Subpanel, Metal	
9	1	03797	Q086-13D	Socket, LED	
10	1	54893	5082-4657	LED, Red	
11	1	80009	366-1690-01	Latch, Pull	
12	1	80009	105-0718-01	Latch	
13	1	80009	105-0719-00	Latch, Retainer	
14	1	81349	NAS662-C2R4	$\begin{aligned} & \text { Screw, Fhd., \#2-56 } \\ & \times 1 / 4 \mathrm{in} . \end{aligned}$	
15	4	81349	MS24693-C26	$\begin{aligned} & \text { Screw, Fhd., \#6-32 } \\ & \times 3 / 8 \mathrm{in} . \end{aligned}$	
16	2	81349	MS24693-C2	$\begin{aligned} & \text { Screw, Fhd., \#4-40 } \\ & \times 1 / 4 \text { in. } \end{aligned}$	
17	1	81349	PKG-50B1/4	Knob	
18	4	81349	NAS620-C4	Washer, Flat, Red. 0/D, \#4	
19	4	81349	MS35338-135	```Washer, Split-Lock, #4```	
20	4	81349	NAS671-C4	Nut, Hex, Sm. Pat., \#4	
21	4	81349	MS24693-C4	$\begin{aligned} & \text { Screw, Fhd., \#4-40 } \\ & \times 3 / 8 \mathrm{in.} \end{aligned}$	

PARTS LIST NUMBER 125584 - AS210-06 MICROWAVE FREQUENCY GENERATOR CHASSIS WIRE ASSY.

ITEM	QTY	MANUFAC- TURER'S CODE	PART NUMBER	DESCRIPTION	REF. DESIG.
1	2	27264	22-012051	Connector, 5-Pin	P3, P5
2	1	27264	22-01-2091	Connector, 9-Pin	P2
3	A/R	16428	ET-24	Wire, 24-AWG	
4	19	27264	08-50-0114	Pin Crimp	
5	-	33472	125588	Wire List	

6.2 MANUFACTURER'S LIST -- CODE TO NAME

This section contains all manufacturer's codes for materials used in the AS210 system. The codes are listed in ascending numberical order.

CODE

00213 NYTRONICS COMPONENTS GROUP, INC.

00779 AMP, INC.

01121 ALLEN-BRADLEY COMPANY

01139 GENERAL ELECTRIC COMPANY

01281 TRW, INC.

01295 TEXAS INSTRUMENTS, INC.

ADDRESS

Subsidiary of Nytronics, Inc. Orange Street Darlington, SC 29532
P.0. Box 3608

Harrisburg, PA 17105
1202 South 2nd Street Milwaukee, WI 53204

Silicone Products Business Department Waterford, NY 12188 PHONE: 518-237-3330

TRW Semiconductor Division 14520 Aviation Boulevard Lawndale, CA 90260
Semiconductor Group 13500 North Central Expressway P.0. Box 225012 M/S 49 Dallas, TX 75265

02114 AMPEREX ELECTRONIC CORPORATION Ferroxcub Division 5083 Kings Highway Saugerties, NY 12477
02660 BUNKER RAMO-ELTRA CORPORATION Amphenol Division 2801 South 25th Avenue Broadview, IL 60153

Solid State Division Route 202
Somerville, NJ 08876
03797 GENISCO TECHNOLOGY CORPORATION Electronics Division 18435 Susana Road Rancho Dominguez, CA 90221
PHONE: 213-537-4750
Licon Division 6615 West Irving Park Road Chicago, IL 60634

CODE	MANUFACTURER	ADDRESS
14655	MOTOROLA, INC.	Semiconductor Products Sector 5005 East McDowell Road Phoenix, AZ 85008 PHONE: 602-244-7100
05245	CORCOM, INC.	1600 Winchester Road Libertyville, IL 60048
06090	RAYCHEM CORPORATION	300 Constitution Drive Menlo Park, CA 94025
06383	PANDUIT CORPORATION	17301 Ridgeland Tinley Park, IL 60477
06540	MITE CORPORATION	Amatom Electronic Hardware Division 446 Blake Street New Haven, CT 06515
07263	FAIRCHILD CAMERA AND INSTRUMENT CORPORATION	Sub of Schlumberger LTD North American Sales Mail Stop 14-1053 401 Ellis Street P.0. Drawer 7284 Mt. View, CA 94042
09353	C AND K COMPONENTS, INC.	15 Riverdale Avenue Newton, MA 02158 PHONE: 617-964-6400
11237	CTS KEENE, INC.	$\begin{aligned} & \text { P.O. Box } 1977 \\ & \text { Paso Robles, CA } 93446 \end{aligned}$
12136	PHC INDUSTRIES, INC.	1643 Haddon Avenue Camden, NJ 08103
13103	THERMALLOY COMPANY, INC.	2021 West Valley View Lane P.0. Box 340839 Dallas, TX 75234
13327	SOLITRON DEVICES	256 Oak Tree Road Tappan, NY 10983
13556	TRW CINCH CONNECTORS	Nuline Facility Division of TRW, Inc. New Hope, MN
14099	SEMTECH CORPORATION	652 Mitchell Road Newbury Park, CA 91320 PHONE: 213-628-5392
14655	CORNELL-DUBILIER ELECTRONICS	Div. of Federal Pacific Electric Co. Government Contracts Department 150 Avenue L Newark, NJ 07101

CODE	MANUFACTURER	ADDRESS
15542	MINI-CIRCUITS LABORATORY	Div. of Scientific Components Corp. 2625 East 14th Street Brooklyn, NY 11235
16428	BELDEN ELECTRONIC WIRE \& CABLE	Sub of Cooper Industries, Inc. 2200 U.S. Highway 27 South P.O. Box 1980 Richmond, IN 47374 PHONE: 317-983-5200
16733	CABLEWAVE	60 Dodge Avenue New Haven, CT 06473 PHONE: 203-239-3311
18612	VISHAY INTERTECHNOLOGY, INC.	Vishay Resistor Products Division 63 Lincoln Highway Malvern, PA 19355
19209	GENERAL ELECTRIC COMPANY	Battery Business Department 441 Highway N P.O. Box 861 Gainesville, FL 32602 PHONE: 904-462-3911
23936	PAMOTOR DIVISION OF WILLIAM J. PURDY COMPANY	770 Airport Boulevard Burlingame, CA 94010
24355	ANALOG DEVICES	$\begin{aligned} & 2 \text { Technol ogy Way } \\ & \text { P.O. Box } 280 \\ & \text { Norwood, MA } 02062 \\ & \text { PHONE: } 617-329-4700 \end{aligned}$
26805	OMNI SPECTRA, INC.	Microwave Connector Division Wal tham, MA
26806	AMERICAN ZETTLER, INC.	16881 Hale Avenue Irvine, CA 92714
27014	NATIONAL SEMICONDUCTOR CORPORATION	2900 Semiconductor Drive Santa Clara, CA 95051
27264	MOLEX, INC.	2222 Wellington Court Lisle, IL 60532
31148	PMI	P.0. Box 15264 Sacramento, CA 95813
32997	BOURNS, INC.	Trimpot Division 1200 Columbia Avenue Riverside, CA
33472	ARGOSYSTEMS, INC.	310 North Mary Avenue Sunnyvale, CA 94086

CODE	MANUFACTURER	ADDRESS
34649	INTEL CORPORATION	3585 Southwest 198th Avenue Aloha, OR 97005
50021	TECHNICAL RESEARCH \& MANUFACTURING, INC.	Kelley Avenue Grenier Field, RFD \#3 Manchester, NH 03103 PHONE: 603-668-0120
50088	MOSTEK CORPORATION	```Sub. of United Technologies Corp. 1215 West Crosby Road P.0. Box }16 Carrollton, TX 75006```
50434	HEWLETT-PACKARD COMPANY	Optoelectronics Division 640 Page Mill Road Palo Alto, CA 94304
51642	CENTRE ENGINEERING, INC.	2820 E. College Avenue State College, PA 16801
53387	MINNESOTA MINING AND MANUFACTURING COMPANY	Electronic Products Division 3M Center St. Paul, MN 55101
54487	MICRONETICS	36 Oak Street Norwood, NJ 07648 PHONE: 201-767-1320
54893	HEWLETT-PACKARD COMPANY	Microwave Semiconductor Division 350 West Trimble Road San Jose, CA 95131
55154	PLESSEY PERIPHERAL SYSTEMS, INC.	17466 Daimler Avenue P.0. Box 19616 Irvine, CA 92714
55566	R A F ELECTRONIC HARDWARE, INC.	95 Silvermine Road Seymour, CT 06483 PHONE: 203-888-2133
56289	SPRAGUE ELECTRIC COMPANY	87 Marshall Street North Adams, MA 01247
58910	ABBOTT TRANSISTOR LABORATORIES, INC.	Transformer Division 639 South Glenwood Place Burbank, CA 91506
59660	TUSONIX, INC.	2155 North Forbes Boulevard Suite 107 Tucson, AZ 85745

CODE	MANUFACTURER	ADDRESS
59705	STANDEX INTERNATIONAL CORPORATION	United Service Equipment Co. Div. 1152 Park Avenue Murfreesboro, TN 37130
59730	THOMAS AND BETTS CORPORATION	Highway 218, South Iowa City, IA 52240
71279	MIDLAND-ROSS CORPORATION	Cambion Division One Alewife Place Cambridge, MA 02140 PHONE: 617-491-5400
71450	CTS CORPORATION	905 North West Boulevard Elkhart, IN 46514
71984	DOW CORNING CORPORATION	3901 South Saginaw Road Midland, MI 48640
73138	BECKMAN INSTRUMENTS, INC.	Helipot Division Sub of Smith Kline/Beckman Corp. 2500 Harbor Boulevard Fullerton, CA 92634
75915	TRACOR LITTLEFUSE, INC.	800 East Northwest Highway Des Plaines, IL 60016
77969	RUBBERCRAFT CORPORATION OF CAL IFORNIA LTD.	1800 West 220th Street P.0. Box B Torrance, CA 90507 PHONE: 213-328-5402
78277	SIGMA INSTRUMENTS, INC.	170 Pearl Street South Braintree, MA 02184 PHONE: 617-853-5000
80009	TEKTRONIX, INC.	4900 Southwest Griffith Drive P.0. Box 500 Beaverton, OR 97077
81349	MILITARY SPECIFICATIONS	Promulgated by Military Departments/Agencies Under Authority of Defense Standardization Manual 4120 3-M
83330	HERMAN H. SMITH, INC.	A North American Philips Company 1913 Atlantic Avenue Manasquan, NJ 08736
88245	WINCHESTER ELECTRONICS	Litton Systems-Useco Division 1536 Saticoy Street Van Nuys, CA 91409

CODE	MANUFACTURER	ADDRESS
90201	MALLORY CAPACITOR COMPANY	Sub of Emhart Industries, Inc. 4760 Kentucky Avenue P.O. Box 372 Indianapolis, IN 46206
91506	AUGAT, INC.	33 Perry Avenue P.0. Box 779 Attleboro, MA 02703
91637	DALE ELECTRONICS, INC.	2064 12th Avenue P.O. Box 609 Columbus, NE 68601 PHONE: 402-563-6301
91836	KINGS ELECTRONICS COMPANY, INC.	40 Marbledale Road Tuckahoe, NY 10707 PHONE: 914-793-5000
92194	ALPHA WIRE CORPORATION	71 Lidgerwood Avenue Elizabeth, NJ 07207 PHONE: 201-92508000
93306	UNIFORM TUBES	MicroDelay Division 200 West 7 th Avenue Collegetown, PA 19426 PHONE: 215-539-0700
95146	ALCO ELECTRONIC PRODUCTS, INC.	1551 Osgood Street North Andover, MA 01845
95238	CONTINENTAL CONNECTOR CORPORATION	34-63 56th Street Woodside, NY 11377 PHONE: 212-899-4422
95987	WECKESSER COMPANY, INC.	Chicago, IL
98291	SEALECTRO CORPORATION	225 Hoyt Mamaroneck, NY 10544
99800	AMERICAN PRECISION INDUSTRIES, INC.	Delevan Division 270 Quaker Road East Aurora, NY 14052 PHONE: 716-652-3600

OPERATION AND MAINTENANCE MANUAL

LIMITED WARRANTY

"The seller warrants that each article of goods sold by it will at the time of shipment be free from defects in materials furnished and workmanship performed by the seller. This warranty and seller's liability are limited either to granting credit or repairing or replacing, at seller's option, with reasonable promptness after return to seller of any article which is disclosed to seller's satisfaction to be defective, and only if said article is returned to the seller promptly after discovery of such defect and in no event later than 12 months (or such other time period as may be specified in writing as a warranty period for a particular article) from the date of delivery thereof. Normal transportation charges in connection with an article returned shall be at the seller's expense, but only if the seller is responsible under the terms of this warranty. This warranty does not extend to any article which has been subject to misuse, neglect or accident, nor does it extend to any article which has been repaired or altered by other than the seller. THIS WARRANTY IS IN LIEU OF ALL OTHER WARRANTIES EXPRESSED OR IMPLIED, INCLUDING ANY WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE. THE RIGHTS AND REMEDIES PROVIDED HEREIN ARE EXCLUSIVE AND IN LIEU OF ANY OTHER RIGHTS OR REMEDIES. IN NO EVENT SHALL SELLER BE LIABLE FOR CONSEQUENTIAL DAMAGES".

Ball Corporation, Efratom Division, will be happy to answer any application or usage questions which will enhance your use of this unit. Please address your requests or correspondence to: Ball Corporation., Efratom Division, 3 Parker, Irvine, California 92718-1605, Attention: Sales Department, or call (714) 770-5000, Fax: (714) 770-2463.

European customers may contact: Ball Efratom Elektronik GmbH, Fichtenstrasse 25, 8011 Hofolding, West Germany, Telephone: 49-81-049040, Fax: 49-81-049918.
©1989 Ball Corporation., Efratom Division. All rights reserved.

CONTENTS

I	INTRODUCTION \& SPECIFICATIONS	
1.1	Introduction	1-1
1.2	Manual Content	1-1
1.3	Connectors	1-2
1.4	Electrical Protection	1-2
1.5	Available Options	1-2
1.6	Specifications	1-3
II	INSTALLATION \& OPERATION	
2.1	Introduction	2-1
2.2	Shipping and Receiving Information	2-1
2.3	Mounting	2-1
2.4	Power Requirements	2-2
2.5	Installation Considerations	2-2
2.6	Frequency and Monitoring Signal Outputs	2-2
2.7	Normal Operation	2-3
2.8	Functional Operation Test Equipment	2-4
2.9	Operational Frequency Accuracy Test	2-4
2.10	Short-Term Stability Test (Allan Variance)	2-6
III	THEORY OF OPERATION	
3.1	Introduction	3-1
3.2	General Theory of Operation	3-1
3.3	Resonator	3-6
3.4	Simplified Block Diagram	3-7
3.5	Servo Board Assembly	3-7
3.6	Lamp Board	3-9
3.7	Power Supply	3-9
3.8	Oscillator Board	3-10
3.9	Synthesizer Board	3-11
IV	MAINTENANCE	
4.1	Introduction	4-1
4.2	Test Equipment	4-1
4.3	Performance Tests	4-1
4.4	Field Maintenance, Troubleshooting, \& Repair	4-5

LLST OF ILLUSTRATIONS
2.1 Winchester Connector and Pin Arrangement 2-3
2.2 Optional Coaxial Connector with Push-on Pin Connector and Pin Arrangement 2-3
2.3 Operational Frequency Accuracy Test Set-up 2-4
3.1 Derivation of Modulation Signal 3-2
3.2 FRK Block Diagram 3-4
3.3 Optical Pumping Process Illustrated 3-5
3.4 Interconnection of Servo PCB Modification, and 5 MHz LN Oscillator 3-12
4.1 Output Level Test Configuration 4-2
4.2 Frequency Offset \& Long-term Stability Test Configuration 4-2
4.3 Short Term Stability \& Signal Output
Tests 4-3
4.4 FRK Baseplate 4-6
4.5 FRK-()LN Wiring Diagram 4-8
4.6 FRK Troubleshooting Overview 4-10
4.7 Snap Diode Access Hole on Resonator Assembly 4-11
4.8 Lamp Adjustment Ports 4-13
4.9 Demodulator Output (Servo Board) 4-15
4.10 Signal Waveform at TP6 4-16
4.11 Waveform \& Amplitude Traces for Servo \& Synthesizer Boards 4-19
4.12 Waveform, Servo Board (TP-3) 4-25
4.13 Waveform, Servo Board (TP-6) 4-25
4.14 Environmental Test Chamber Set-up 4-27
LIST OF TABLES
$1.1 \quad$ Specifications 1-3
2.1 Functional Operation Test Equipment 2-4
4.1 - Required Test Equipment 4-1
4.2 Resonator Disconnect Points 4.7

APPENDIX A

Drawing List, Schematics, Assembly Drawings, and Parts Lists

APPENDIX B

FRK Remote Frequency Adjustment Modification Procedure

SECTION I

INTRODUCTION AND SPECIFICATION

1.1 INTRODUCTION.

Abstract

The Efratom Model FRK-(H or L)LN Rubidium Frequency Standard (RFS) is a compact, atomic resonance-controlled oscillator which provides an extremely pure and stable sinusoidal signal of 5 or 10 MHz , at 1 Vrms into a 50 ohm load (refer to Section 1.5 for other available options). The unit is designed for use in high-performance communication systems, frequency standard equipment, advanced navigation equipment, and all other equipment and systems which require extremelyprecise frequencies/time intervals. With the proper input power provided and suitable cooling provisions, the FRK-()LN can be operated as a free-standing frequency standard for laboratory and testing purposes.

NOTE
Throughout this manual the models FRK-HLN \& FRK-LLN will be referred to as model FRK-()LN, indicating that the text or diagram references both models. If only one model is to be referenced, the full model designation will be printed out.

1.2 MANUAL CONTENT.

This manual contains information regarding the operation and field maintenance of the Model FRK -() LN, 5 MHz Rubidium Frequency Standard (RFS), with a Final Assembly No. 703-200-8. A Model FRK-() LN with a Final Assembly No. other than 703-200-8 is a modified unit producing a 10 MHz output, or has some other feature not standard to model 703-200-8. If a modified unit differs operationally from the standard unit an addendum will be included with this manual describing the differences. Note the information in the addendum prior to reading the manual to determine what special specification or operation aspects may exist. If an addendum has not been included for a modified unit, it can be assumed that the modification does not affect the unit's operation.

Sections I and II contain general information concerning the unit. It is recommended that these sections be read completely prior to attempting operation. Section III provides the general theory of operation for the technician or engineer who requires a more thorough understanding of the unit's operation. Section IV provides the required information for performing field maintenance on the unit. An Outline Drawing, Schematic Diagrams, Assembly Drawings and Parts Lists are provided
in the Appendix in the Appendix.

1.3 CONNECTORS.

All necessary connectors for inputs, output and monitor signals are easily accessible from the outer cover of the unit. The unit is manufactured using either a Winchester connector, P/N SRE-20PJ, which mates with SRE-20SJ and a SMA-type coaxial connector. For other connector configurations, refer to unit label for pin out information. (Other optional connectors are available; contact the Efratom sales department).

1.4 ELECTRICAL PROTECTION.

The unit is protected against reverse polarity input power by both an internal fuse and diode. The output and monitor signals are short-circuit protected.

1.5 AVAILABLE OPTIONS

(a) External (remote) Frequency Adjustment Option.
(b) Additional Magnetic Shielding.
(c) Low Operating Temperature Option:

FRK-HLN $\leq 4 \mathrm{E}-10$ from $-55^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$
FRK-LLN $\leq 6 \mathrm{E}-10$ from $-55^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$

1.6 SPECIFICATIONS.

Pertinent performance specifications for the Models FRK-LLN and FRK-HLN are listed in Table 1.1.

Table 1.1. Specifications

CHARACTERISTICS	MODEL FRK-L (LN)		DEL FRK-H (LN)
Output	5 or 10 MHz sine wave 1.0 Vrms into 50 ohms , floating ground (not floating with filter connector).		
Accuracy	Factory set to $5.0 \mathrm{MHz} \pm 5 \mathrm{E}-11$ at shipment.		
Signal to Noise (SSB 1 Hz BW)	125 dB at 10 Hz and 155 dB at 100 Hz from carrier. 120 dB at 10 Hz and 147 dB at 100 Hz from carrier.		$\begin{aligned} & (5 \mathrm{MHz}) \\ & (10 \mathrm{MHz}) \end{aligned}$
Input Power	13 W at $24 \mathrm{Vdc}, 25^{\circ} \mathrm{C}$ ambient; 22 to 32 Vdc ; peak during warm-up, 1.8 A .		
Warm-up Characteristics	≤ 10 minutes to reach $2 \mathrm{E}-10$ at $25^{\circ} \mathrm{C}$ ambient.		
Retrace	$\pm 2 \mathrm{E}-11$		
Long-term Stability	<4E-11/month		$<1 \mathrm{E}-11 /$ month
Short-Term Stability	$3 \mathrm{E}-11 \tau=1 \mathrm{sec}$ $1 \mathrm{E}-11 \tau=10 \mathrm{sec}$ $3 \mathrm{E}-12 \tau=100 \mathrm{sec}$		$1 \mathrm{E}-11 \tau=1 \mathrm{sec}$ $4 \mathrm{E}-12 \tau=10 \mathrm{sec}$ $1 \mathrm{E}-12 \tau=100 \mathrm{sec}$
Trim Range	$\geq 2 \mathrm{E}-9$		
Voltage Variation	$<1 \mathrm{E}-11 / 10 \%$ change (within input power limit noted above)		
*Operating Temperature	$<3 \mathrm{E}-10$ from $-25^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$	<1E	from $-25^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$
Storage Temperature	$-55^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$		
Magnetic Field	$<4 \mathrm{E}-13 / \mathrm{AM}^{-1}(3 \mathrm{E}-11 / 0.1$ millitesla)		
Altitude	$<1 \mathrm{E}-13 / \mathrm{mbar}$ (sea level to $21,000 \mathrm{~m}$)		
Humidity	95\% MIL-T-5422F		
Shock	MIL-STD-810C, Method 516.2, Procedure 1		
Vibration	MIL_STD-810C, Method 514.2, Procedure 1		
Size	$100 \mathrm{~mm} \times 99 \mathrm{~mm} \times 112 \mathrm{~mm}$ (3.9 in . $\times 3.9 \mathrm{in}$. by 4.4 in .)		
Weight	1.3 Kg (2.9 lbs); 1.55 Kg (3.5 lbs), with optional heat sink		

*Highest operating temperature as measured at the baseplate. The highest ambient temperature the unit may be operated in is dependent on the heat transfer between the unit's baseplate and the ambient.

This page intentionally left blank.

SECTION II

INSTALLATION AND OPERATION

2.1 INTRODUCTION.

This section of the manual contains information regarding the installation and operation of the Efratom FRK-()LN. It is recommended that this section be read carefully prior to attempting operation of the unit.

2.2 SHIPPING AND RECEIVING INFORMATION.

The Model FRK-()LN is packaged and shipped in a foam-packed container. The unit was inspected mechanically and electrically prior to shipment. Upon receipt of the unit, a thorough inspection should be made to ensure that no damage has occurred during shipping. If any damage is discovered, contact Ball Corporation, Efratom Division, 3 Parker, Irvine, CA. 92718-1605. Telephone (714) 770-5000; Telex 685-635. European customers should contact Ball Efratom Elektronik GmbH, Fichtenstrasse 25, 8011 Hofolding, West Germany, Telephone 08104/90 40. If reshipment of the unit is necessary, the original container and packing should be used. If the original container is not available, a suitable container with foam-packing is recommended.

2.3 MOUNTING.

The unit's baseplate has been drilled and tapped to accommodate installation. The unit should be mounted with the aluminum thermal baseplate in contact with a flat metal surface. Mounting screws must not be allowed to penetrate the baseplate more than 0.2 inches (5 mm). It is recommended that the mounting surface be designed to permit free access to the unit's frequency adjust potentiometer. Refer to outline drawing 703-203-1 in the appendix for mounting dimensions.

The heat transfer characteristics of the mounting surface must be adequate to limit the rise of the unit's baseplate to $<+65^{\circ} \mathrm{C}$. The maximum allowable environmental temperature (Ta), for this mounting is:

$$
\begin{aligned}
& \mathrm{Ta}=65^{\circ} \mathrm{C}-\left(\mathrm{V}_{\mathrm{s}} \times \mathrm{I}_{\mathrm{s}} \times \mathrm{R}_{\mathrm{k}}\right) \\
& \text { Where: } \mathrm{V}_{\mathrm{s}}=\text { Supply Voltage in volts } \\
& I_{\mathrm{s}}=\text { Supply Current in amperes } \\
& R_{k}=\text { Thermal Resistance between unit and ambient, }\left({ }^{\circ} \mathrm{C} / \text { watt }\right) .
\end{aligned}
$$

NOTE
An add-on heat sink is an available option from Efratom; order Model 70223, Air Cooled Heat Sink.

2.4 POWER REQUIREMENTS.

The Model FRK-()LN requires an external power source capable of providing between +22 and +32 Vdc , with a minimum of 1.8 ampere output. The positive input voltage for the unit is to pin L with the negative return voltage on pin P of the connector.

In order to obtain the cleanest output signal close to the carrier, the maxmum ac ripple on the supply voltage must be less than 1 mV peak-to-peak. If it is acceptable for the output frequency to contain spurious multiples of the powerline frequency $(50,60$, or 400 Hz), the ripple can be higher, but in no case should the supply voltage $A C+/$ - peak exceed the upper or lower input power limit of the unit.

2.5 INSTALLATION CONSIDERATIONS.

Some consideration must be given to the operating location of the unit regardless of its application. To minimize frequency offsets and/or non-harmonic distortion, the unit should not be installed near equipment generating strong magnetic fields such as generators, transformers, etc.

CAUTION

CARE MUST BE TAKEN TO ENSURE THAT THE MAXIMUM OPERATING TEMPERATURE IS NOT EXCEEDED, $\left(+65^{\circ} \mathrm{C}\right.$ AS MEASURED AT THE UNIT'S BASEPLATE). IN ADDITION, THE UNIT'S OUTER COVER IS A SPECIALLY DESIGNED MAGNETIC SHIELD; DAMAGE TO THE OUTER COVER COULD CHANGE ITS SHIELDING CHARACTERISTICS.

2.6 FREQUENCY AND MONITORING SIGNAL OUTPUTS.

Figure 2.1 illustrates the standard Model FRK-()LN coaxial connector J1 with Winchester connector $\mathbf{J} 2$, and presents a brief functional description of the pin connections. Figure 2.2 presents the same information for the optional 8-pin, wirewrap or press-fit connector with coaxial connector.

J1 5 or 10 MHz OUTPUT
J2 A. Optional remote frequency adjust
C. Optional remote frequency adjust
D. Rb LAMP VOLTAGE SIGNAL
F. XTAL CONT VOLTAGE SIGNAL
H. RESONANCE LOCK SIGNAL
L. +22 TO + 32 VDC INPUT
P. GROUND (connected to enclosure)
(Viewed rotated 180° so pin callouts are readable)

FIGURE 2.1. Winchester Connector and Pin Arrangement
A 3210
wining
$\operatorname{CoAX} 1.5$ or 10 MHz OUTPUT
Ne 2.5 or 10 MHz GROUND (isolated from enclosure)
BLACK 3. GROUND (connected to enclosure)
WHT/NEL 4. + 22 TO + 32 VDC INPUT
GREEN 5. RESONANCE LOCK SIGNAL
NC 6. XTAL CONT VOLTAGE SIGNAL
NC 7. Rb LAMP VOLTAGE SIGNAL
VELLOW 8. Optional remote frequency adjust
RED 9. Optional remote frequency adjust

FIGURE 2.2. Optional 8-Pin, Connector with Coaxial Connector and Pin Arrangement

NOTE
Although Figure 2.1 illustrates the output signal (10 MHz) from the coaxial connector J1, the unit can be wired to provide the output signal to the Winchester connector, thus eliminating the need for the coaxial connector. For that configuration the output signal is to pin W , and the shield to pin T.

2.7 NORMAL OPERATION.

When the unit's output is terminated with a 50 ohm resistive load, and 28 Vdc is applied to J 2 pins L $(+)$ and $P(-)$, the unit will immediately begin producing a 10 MHz signal from the crystal oscillator. Within approximately 10 minutes after application of input power, the unit will "lock". At that time the crystal is stabilized by the atomic resonant frequency.

2.8 FUNCTIONAL OPERATION TEST EQUIPMENT.

The test equipment required to functionally test the unit is listed in Table 2.1. Test equipment other than those items listed may be used provided that the performance equals or exceeds the MINIMUM USE CHARACTERISTICS as stated in Table 2.1.

TABLE 2.1. Functional Operation Test Equipment

PARA \#	ITEM	MINIMUM USE CHARACTERISTICS	TEST EQUIPMENT
2.1	DC Power Supply	Output Voltage: 22 to 30Vdc Output Current: 2.0 Amps Min.	Hewlett-Packard 6433B or 6296A
2.2	DMM (Digital Multimeter)	Voltage Range : 0 to 30 Vdc Accuracy: $\pm 1.25 \%$ Resistance Range: 0 to 150 ohm.	Fluke 8020A or 8000A
Freq. \& Time			
Interval Analyzer	Internal Ref. Freq: 10 MHz Accuracy: $\pm 1 \mathrm{E}-12$ Stability: parts in 10^{12}	Hewlett-Packard 5371A Frequency \& Time Interval Analyzer and HP5371A Software Kit	

NOTE

Throughout the test procedures in this manual the Model FRK-()LN will be referred to as the Unit Under Test, (UUT). All connections described or illustrated pertain to the standard Winchester connector; if the UUT has a different connector arrangement, make the described connections to the appropriate pins as described in 2.6 or the pin diagram accompaning the UUT.

2.9 OPERATIONAL FREQUENCY ACCURACY TEST.

2.9.1 Connect the equipment as shown in Figure 2.3.

Figure 2.3. Operational Frequency Accuracy Test Setup.
2.9.2 Adjust the DC power supply controls to obtain a $28 \pm 1.4 \mathrm{Vdc}$ indication on the DMM.
2.9.3 Allow sufficient time for equipment to stabilize.

NOTE
The UUT requires 10 minutes stabilization to obtain the following frequency accuracy: $\pm 2 \mathrm{E}-10$ of the final frequency (calibrated frequency), or the frequency before turn off, (if turn off was within 24 hours and at the same environmental temperature). If the UUT was in storage, the worse case error $= \pm 2 \mathrm{E}-10$ warm-up + \pm last calibration accuracy or $\pm 5 \mathrm{E}-10$ factory setting at shipment, whichever is applicable + *aging specification.

The UUT requires 1 hour stabilization time to obtain the following accuracy: $\pm 2 \mathrm{E}-11$ of final frequency or frequency at turn off (if turn off was within 24 hours and at the same environmental temperature). If UUT was in storage, the worse case error $= \pm 2 \mathrm{E}-11$ warm-up $+/-$ last calibration accuracy or $\pm 5 \mathrm{E}-11$ factory setting at shipment, whichever is applicable + *aging specification.

* Aging Specification: \quad FRK-HLN $\leq 1 \times 10^{-11} /$ month

FRK-LLN $\leq 4 \times 10^{-11} /$ month
2.9.4 Follow the instructions in the HP5371A Frequency and Time Interval Analyzer Operation Manual to begin the test.
2.9.5 Allow sufficient time for the HP5371A to indicate the UUT OFFSET for the data you require. Verify that the UUT frequency offset is within the tolerance stated in the NOTE following Step 2.9.3.

NOTE

If the UUT is not within the stated tolerance limits, perform the Frequency Adjustment procedure, paragraph 4.6.5.1 through 4.6.5.2.

2.10 SHORT-TERM STABILITY TEST (ALLAN VARIANCE)

NOTE

If you have just completed 2.9 through 2.9.5, and the Allan Variance indications (as displayed by the HP5371A) are of the required averaging times, the test results as indicated are valid. If 2.9 was not performed continue with 2.10 .1
2.10.1 With the equipment connected as shown in Figure 2.3, and the required stabilization time allowed, (refer to NOTE following 2.9.3), begin the test.
2.10.2 Allow sufficient time for the HP5371A to display the required data for the averaging times, and verify that UUT Allan Variance is within tolerances listed in Table 1.1 SPECIFICATIONS.

SECTION III

THEORY OF OPERATION

3.1 INTRODUCTION.

This section of the manual contains a general theory of operation and circuit analysis of the Model FRK-()LN Rubidium Frequency Standard. A block diagram, (Figure 3.2) has been included to help clarify the text. Schematic diagrams are included in the Appendix.

3.2 GENERAL THEORY OF OPERATION.

The unit's highly frequency-stable 5 or 10 MHz output signal is obtained from a 5 or 10 MHz Voltage Controlled Crystal Oscillator (VCXO), whose frequency is referenced and locked to the atomic ' R Resonance Frequency"' of Rubidium ($f_{R b}$).

3.2.1 ATOMIC REFERENCE FREQUENCY.

The atomic reference frequency is provided by the 6.834 GHz ground-state hyperfine transition of the Rb^{87} (rubidium). The VCXO is locked to the f_{Rb} at approximately 6.834 GHz , by synthesizing a microwave signal, from the 10 MHz VCXO output, having a frequency in the vicinity of $f_{R b}$. The microwave signal is used to excite the rubidium atoms that are contained within a microwave cavity (resonance cell). The frequency synthesis scheme is designed so that the VCXO frequency is exactly 10 MHz when the microwave frequency is equal to f_{Rb}. The frequency of the signal applied to the microwave cavity can be maintained equal to f by generating an error signal to servo the VCXO through its control voltage.

3.2.2 RUBIDIUM LAMP.

Light from a rubidium lamp is generated by an rf excited plasma discharge. The light passes through the resonance cell, where it interacts with the rubidium atoms contained therein. Some of the light is incident upon a silicon photo detector photocell within the resonance cell. When the applied microwave frequency is equal to the f_{Rb}, the rubidium atoms resonate within the microwave field in the cavity; this causes the light reaching the photo detector to decrease. This behavior is illustrated by the left, uppermost curve in Figure 3.1.

Figure 3.1. Derivation of Modulation Signal
3.2.3 OPTICAL PUMPING. The rubidium oscillator is a passive device, meaning that the atoms themselves do not produce a self-sustaining oscillation. Nevertheless, the atoms can be viewed in their simplest form as a high- $\mathrm{Q},\left(\mathrm{Q} \sim 10^{7}\right.$) series-resonant tank curcuit that is resonant at the hyperfine frequency ($\sim 6.8 \mathrm{GHz}$ for rubidium atoms). The voltage source driving the tank is the microwave input coming from the Modulator/Synthesizer, and the LCR components are the rubidium atoms contained in the optical package. The atomic resonance is detected by optical means and involves a process known as Optical Pumping, by which atoms are raised to a higher state through the absorption of light energy.

The two lower levels, A and B, are the ground state hyperfine levels. Statistically speaking, the rubidium atoms will be equally divided between these two levels. If the atoms are irradiated with microwave energy at the hyperfine frequency, then those atoms in level A will make a transition to level B and vice- versa, without changing the overall distribution between the two levels (statistically). [The hyperfine frequency (f_{Rb}) is related to the hyperfine energy level separation E (joules) $=\mathrm{h} \cdot \mathrm{f}_{\mathrm{Rb}}(\mathrm{Hz})$ where $\mathrm{h}=$ Plank's Constant $\left.=6.6226 \times 10^{-34} \mathrm{joule} / \mathrm{Hz}\right]$. A third and higher energy state exists which is referred to as level C.

Level C is an optically excited state of the atom which is normally vacant; (for rubidium, this C level state can be excited by infrared light energy at the proper wavelength). Transitions to level C are known as "optical transitions" and can occur from either of the two hyperfine energy levels A or B. If only the spectral wavelength corresponding to one of the hyperfine levels is introduced, only the atoms at that hyperfine level will make the transition to level C . This condition can be generated by filtering out the spectral wavelength corresponding to one of the hyperfine levels.

If the light energy injected into the resonance cell corresponds to the wavelength required for level A to C transitions, the rubidium atoms at the A level will absorb some of the light. The absorption of light raises those atoms to the C level energy state. After a short time the atoms which were raised to the C level will emit a photon of the same wavelength that caused the energy level to increase; they then return to the ground state hyperfine level, redistributing themselves (statistically) equally between level A and B. The atoms which return to level A will again absorb the light and be raised to level C , where they will remain for the short time before emitting the photon and again redistributing themselves between the two hyperfine energy levels A and B. By this means, Optical Pumping can be used to produce a population difference between the two hyperfine levels, whereby all of the atoms are pumped into one hyperfine level (for the preceeding situation, level B). Once this condition exists, there are no atoms left in level A to be excited to level C and the light is not the proper wavelength to excite the atoms in level B to level C, therefore the light is unattenuated after passing through the resonance cell.

As discussed earlier, if a microwave field corresponding to the hyperfine frequency were applied, the atoms at level B would make a transition to level A and be available for excitation to level C by the light beam. Since each excitation of an atom in level A is accomplished by the absorption of a light photon, the net effect of applying the microwave field is to cause attenuation of the light beam. Figure 3.3 pictorially illustrates the Optical Pumping process.

Figure 3.2. FRK Block Diagram

Assume the atoms are distributed equally between levels $A \& B$. Level C is much higher; the transitions $A-C$ and B-C correspond to lines in the optical part of the spectrum

They will remain there for a short time (as little as ten millionth of a second) and then emit energy, dropping back either to the A or B state.

Irradiating a sample ōf atoms with a light beam from which the spectral line $B C$ has been filtered , causes photons to excite atoms in level A but not in level B. Atoms excited out of A absorb energy and rise to C .

The proportion going to each state depends on the structure of the atoms, but occasionally an atom drops into B. When it does, it can no longer be excited by the incident light. If it returns to A, the light will raise it to the C state again.

Again it will have some probability of dropping to B.

Given enough time, every atom must end up in the 8 state, and the material is then completely pumped.

8

If some atoms are returned to the A state, light will again be absorbed, and the brightness of the trans- mitted beam will drop sharply. This is done by irradiating the atoms with RF frequency corresponding to the energy of transition between levels A and $B ; \approx 6.86 \mathrm{~Hz}$.

Figure 3.3. Optical Pumping Process Illustrated
If the overall energy level were to remain constant, there would be no way to generate an error signal for VCXO frequency correction. By frequency modulating the microwave signal, the light from the rubidium lamp appears to vary in intensity at the same modulation rate. This variation in the light intensity is effective at $<0.1 \%$ of the overall intensity of the light. The photocell, within the cavity, detects the variation in light intensity; the Servo Board uses this signal to indicate atomic lock and to generate the correction signal for the VCXO if the VCXO should drift off frequency.

3.2.4 RESONANT SIGNAL/LOCK SIGNAL LOGIC.

When light from the Rubidium lamp strikes the photocell contained within the resonator, the photocell generates a current proportional to the intensity of the light. By modulating the rf signal injected into resonator, (at 127 Hz), the light striking the photocell will vary at the modulation rate, $(127 \mathrm{~Hz})$, and the photocell output current will vary at the same modulation rate, $(127 \mathrm{~Hz})$.

When the rf being injected into the resonator is exactly equal to $f_{R b}$, the 127 Hz modulation varies the light signal around the null point of the photocell current. (minimum light $=$ minimum photocell current.) When the light signal varies around the photo current null point, the photocell output varies at twice the fundamental frequency, or 254 Hz . It is this 254 Hz signal which is used to generate the lock indicator signal. The lock indicator signal is the primary indicator that the unit is operating
normally. If the rf signal, (which is synthesized from the 10 MHz VCXO), drifts off frequency (rf $<>f_{\text {Rb }}$, the photocell output reverts to the fundamental 127 Hz rate. The phase of the 127 Hz indicates if the $r f$ is $\left\langle f_{R b}\right.$ or $>f_{R b}$ and this phase information is used to servo the VCXO in the proper direction so that $\mathrm{rf}=\mathrm{f}_{\mathrm{Rb}}$. This principle is illustrated in the lower three sine waves labeled MODULATION (127 Hz), in Figure 3.1.

3.3 RESONATOR (Schematic Drawing No.703-221)

The function of the Resonator is to provide the correct signal to the Servo board in order to control the frequency of the crystal oscillator.

3.3.1 STEP RECOVERY DIODE.

The 60 MHz and 5.3125 MHz signals from the Synthesizer board are applied to a Step Recovery Diode, CR1. When CR1 conducts, it produces the harmonics of the 60 MHz and 5.3125 MHz signals (mixed). The fundamental frequency and the harmonic frequencies are input to the resonant cell via a resonant loop. The resonant cell and loop are tuned to select the 114th harmonic which corresponds to the resonant frequency of rubidium. The "Response of the Atoms" is detected by the photocell CR2 which supplies the correcting signal to the servo board.

3.3.2 RESONATOR COIL.

The resonator coil provides a magnetic field around the resonator cavity. This magnetic field is called the "C-Field". The strength of the C-Field is controlled by the voltage divider network on the power supply board comprised of R19 through R22. The adjustment of the C-Field is used for fine tuning of the FRK's output frequency.

3.3.3 RESONATOR CAVITY.

The resonator cavity temperature is elevated and maintained between $75^{\circ} \mathrm{C}$ and $78^{\circ} \mathrm{C}$ depending upon actual requirements of the particular FRK.

3.3.4 RESONATOR THERMOSTAT.

The operation of the resonator thermostat is typical of the heater control circuitry used in the unit. The resonator thermostat circuit consists of Q1 and U1 along with associated circuitry mounted on board 6, part of the resonator assembly, in conjuction with the resonator heater transistors, Q2 and Q3 and resonator thermistor mounted on the resonator assembly, and select resistor R15 mounted on the power supply board.

U1 is an op amp with a resistive bridge network on its inputs. The elements of the bridge network are R1, R5, and the thermistor. In one leg of the bridge is the thermistor sensing the temperature of
the resonator; in the other leg of the bridge is select resistor R15.

For a given resistance value of R 15 , the Op Amp will drive the resonator heaters until the desired temperature is achieved. When the desired temperature is achieved, the bridge network will obtain a balanced condition. With the bridge in balanced condition, the op amp begins to regulate the power to the heater transistors, effectively maintaining the resonator at the proper temperature. In order to control the temperature overshoot, a portion of the output from U1, pin 1 is fed back to the input, this slows down the rate of change sensed at the input by the changing resistance of the thermistor. Transistor Q1 functions as a current limiter for the heater circuit. Q1 senses the current through the heater by detecting the voltage drop across R13. If the heater current becomes too high, Q1 begins to conduct which causes the bias to the heater to decrease. R11 limits the heater current when higher input voltage are present so that the maximum heater power is approximately constant.

3.4 SIMPLIFIED BLOCK DIAGRAM.

As illustrated by the simplified block diagram Figure 3.2, the Model FRK contains a servo board assembly, the lamp board assembly, a power supply assembly, a crystal oscillator assembly, the synthesizer board assembly, and the physics package (resonator assembly, Rb lamp, etc.).

3.5 SERVO BOARD, ASSEMBLY A1. (Schematic Drawing No. 100120).

The primary function of the servo circuit is to provide the crystal control voltage at E 8 for the 10 MHz VCXO. The control voltage is derived by comparing the phase of the 127 Hz modulation signal with the phase of the photocell signal at E1 and E5. The secondary function is to provide the monitoring signal for the Rb lamp operation at E 4 , the atomic resonant lock circuit at E 7 and the VCXO monitor control voltage at E9.

3.5.1 127 AND 254 Hz REFERENCE SIGNALS.

CMOS oscillator/divider U3 on the servo board, provides the 127 and 254 Hz reference signals and the 127 Hz modulation signal for the rf introduced into the resonator. The oscillator frequency of 8.128 KHz is determined by $\mathrm{C} 17, \mathrm{R} 19$ and Select-in-test resistor R20. The divider portion of U3 divides the oscillator frequency into the required 127 and 254 Hz signals. The 127 Hz reference signal is routed from U3, pin 4 to pin 11 of synchronous demodulator U4; and to the input of U6, pin 2 through the RC network R37-C24. The RC network R37-C24 plus the feedback network R38C25 and the output RC filters (R39, C26, R40 on the servo board, and C2 and C12 on the synthesizer board) serve to waveshape the 127 Hz signal into the sinewave which is coupled to the synthesizer to modulate the rf.

The 254 Hz reference signal is routed from U3, pin 5 to pin 9 of synchronous demodulator U4. It is the 254 Hz reference signal and the 127 Hz reference signal which control the timing of the synchronous switch U4.

3.5.2 PHOTOCELL OUTPUT SIGNAL.

The photocell output, (DC bias together with 254 Hz when the unit is in the normal locked mode of operation, or 127 Hz while the unit is obtaining a lock), is routed to E1 and E5 on the servo board A1. E1 and E5 tie to the input of dual stage amplifier Ul at pins 5 and 6 respectively. The output of the first stage of amplification is capacitively coupled to the input of the second stage of amplification U1, pin 8 and routed to E4. E4 provides the Rb Lamp Monitor signal to the front panel connector.

The output of the second stage of amplification is capacitively coupled to the input of the lockmonitor circuit, pin 12 of U6; to the input of the 127 Hz Filter, pin 3 of U2. U2, pins 5, 6, and 7 set the conditions for the power supply to switch from +22 Vdc to +17 Vdc after the Rb Lamp obtains "correct mode ignition". When the unit is operating in its normal, locked condition the output of pin 1 of the 127 Hz filter is a 254 Hz sinewave. This output is coupled to pin 12 of the synchronous demodulator U 4 .

3.5.3 SYNCHRONOUS DEMODULATOR, U4.

U4 is a triple two-channel CMOS analog switch which functions as a synchronous demodulator. The 127 and 254 Hz reference signal at pins 11 and 9 respectively, control the synchronous switching of two of the switches, while the third switch is controlled by the level of signal at $U 4$, pin 10 , from the lock monitor circuit, U6. In addition to the reference signals at U4, pins 9 and 11, the filter output at U 4 pin 12, and the output of the lock monitor amplified at U4 pin 5, the synchronous demodulator also has a 6.8 volt reference level applied to pins 5 and 13 from the dividing/regulating network on the +17 Vdc line at $\mathrm{E} 2, \mathrm{E} 3$.

3.5.4 INTEGRATOR U5.

U5 functions as an integrator. It's output voltage changes at a rate determined by the differential input voltage. For example, an input differential of -200 mV causes an output voltage change of $+200 \mathrm{mV} / \mathrm{sec}$. The change will continue until the differential input is nullified, (crystal returns to center frequency), or until the Op amp reaches it's maximum output voltage. The output of the integrator U5 is the crystal control voltage used to control the frequency of the VCXO via varactor A4-CR3. Part of the integrator output is also routed to the sweep control circuit at U6, pin 5.

3.5.5 SWEEP CONTROL CIRCUIT, U6.

U6 pins 5, 6, and 7 function as a comparator which controls the up/down sweep. When the unit is not locked to the atomic resonance, the output of U6 at pin 7 is fed back to the input of U 5 via the synchronous demodulator U4, pin 2. This feed back signal causes the integrator U5 output to sweep the entire voltage range about once every forty seconds; this sweeps the VCXO frequency until atomic resonance lock is achieved.

3.5.6 LOCK MONITOR CIRCUITS.

As stated in 3.4.2, a portion of the photocell signal is applied to an input of the Lock Monitor circuit at U6, pin 12. U6 pins 12,13 and 14 , with associated circuitry, form a second harmonic amplifier to provide a 254 Hz signal at pin 3 of the Synchronous demodulator U 4 . The 254 Hz at pin 3 is chopped at the 6.8 volt reference level from U4, pin 13, at the 254 Hz rate, controlled by the 254 Hz reference signal at U 4 , pin 9 . The resultant signal at U 4 pin 4 is coupled to U 6 , pin 9 . With the unit locked to $f_{R b}$ the signal at U6, pin 9 will cause the output at U 6 pin 8 to increase. This increase provides the positive signal at U 4 pin 10 which removes the sweep control signal from the Integrator U5; and also biases Q1 into a conduct mode which provides the Lock Monitor signal at the front panel connector.

3.6 LAMP BOARD A2. (Schematic Drawing No. 703-209)

The lamp board contains the lamp exciter circuits and lamp-housing heater circuits. The function of the lamp board is to ignite and maintain ignition of the Rb lamp, and to provide the required heating necessary to maintain the lamp housing at approximately $115^{\circ} \mathrm{C}$.
3.6.1 The Rb lamp excitation circuit consists of an adjustable 79 MHz oscillator. Transistor Q2 is the active element, and the tank circuit L4, C11 maintain optimum lamp ignition.
3.6.2 The Rb lamp is mounted in a temperature-controlled housing. Q3 is mounted on the housing and acts as the heating element. Thermistor RT1 is the temperature sensor and forms part of the feedback network for the thermal control circuit U1 and Q1. Refer to paragraph 3.3.4 RESONATOR THERMOSTAT for a more complete analysis of the Heater Controller operation.
3.7 POWER SUPPLY A3 (Schematic Drawing No. 703-254).

The internal power supply provides the unregulated, filtered voltages for the Rb lamp heaters, Oscillator heater and Resonator heaters; in addition to providing the filtered and regulated voltage for the units operation. The input voltage line is fuse and diode protected against reverse polarity inputs.

The Power Supply board accepts the +22 to +32 Vdc input voltage at E 2 , and provides +22 Vdc , until the Rb lamp ignites, at which time the power supply is switched to +17 Vdc . The switching occurs when U2-B, on the Servo board, senses that the Rb lamp is ignited, in the correct mode, by the positive increase at pin 5. The output of U2-B is routed to the power supply board at E29. The positive voltage increase provides reverse bias for CR6, effectively removing R24 from the circuit and setting the condition for the power supply output to be lowered to the +17 Vdc required for the internal circuits of the unit.
3.7.1 + 17 Vdc REGULATED POWER SUPPLY. The +17 Vdc power supply consists of Q1 and U1 along with the components in their respective circuitry mounted on the Power Supply board and pass transistor Q1 mounted on the baseplate.

The +22 to +32 Vdc input is routed across the 3 amp fuse F 1 to the voltage divider circuit consisting of R5, R7. The input voltage is dropped to approximately 3 Vdc which is coupled through CR3 to U 1 pin 2. Before power is applied, U1 pins 2,3 , and 6 were at ground potential. With 3 volts at U1, pin 2 and U1, pin 3 still at ground potential, the resultant offset causes U1, pin 6 to go low, turning on the power transistor Q1. The +17 volt line is fed back through CR4 and R9 to the reference zener diode, CR5. CR5 develops approximately 6.3 Vdc at U 1 , pin 2 . In addition, the 17 volt line is fed back to the voltage divider consisting of R6, R8 and R10 to apply a voltage to U1, pin 3. The voltage divider determines the voltage ratio of the 17 volt line to the voltage reference diode CR5, thus setting the voltage level of the 17 volt line.

Transistor Q1 on the power supply board functions as a current limiter by sensing the voltage drop across R14. If the current through the pass transistor becomes excessive, Q1 begins to conduct decreasing the emitter-base bias on the pass transistor, thus limiting the current flow.

3.8 OSCILLATOR BD, A4 (Schematic Drawing No.703-103).

The purpose of the Oscillator board is to provide a stable 5 or 10 MHz signal (depending on configuration) to the output connector, and a 10 MHz signal to the synthesizer board. The Oscillator board consists of the 5 MHz or 10 MHz Voltage Controlled Crystal Oscillator (VCXO), the crystal oven and thermal control circuitry, and a buffer amplifier.
3.8.1 VCXO HEATER. The 5 or 10 MHz VCXO crystals are mounted in a temperature controlled oven. The oven is heated by the heater transistor Q9. The crystal heater controller operation is basically the same as discussed in 3.3.4, with RT1 acting as the temperature sensor, balancing out R37 and Select Resistor R42. Transistor Q8 is a current limiter which senses the current through the heater by detecting the voltage drop across R49.
3.8.2 5 MHz or 10 MHz VCXO. The oscillator consists of the 5 or 10 MHz SC-Cut crystal Y1, and transistors Q1 and Q2 with associated circuitry. Q2 is the actual oscillator circuit, with Q1 setting the gain of the oscillator by controlling the bias at the base of Q 2 . The frequency of oscillation is determined by the capacitive tuning network consisting of C5, C6, C7 and varactor CR1. The 5 MHz signal from the VCXO is the driving signal for the Field Effect Transistor (FET) Q3. FET Q3 provides the feedback for the oscillator circuit and is used as a low-noise linear amplifier to drive the output buffer (Q4,5).

3.8.3 Buffers

3.8.3.1 5 MHz LN Oscillator (5 MHz buffer and 10 MHz doubler). The 5 MHz LN Oscillator drives the Cascade Buffer made up of Q4 and Q5. Its output is transformer coupled (through T1) to the output connector (J 1). Phase complimentary signals of equal amplitude are picked off the collector and emitter of Q5 and fed to the frequency doubler (Q6, Q7). This stage feeds 10 MHz to the Synthesizer PCB.

3.8.3.2 10 MHz LN Oscillator. The 10 MHz LN Oscillator drives the Cascade Buffer, which is

 made up of Q4 and Q5. Its output is transformer coupled (through T1) to the output connector (J1). The signal at the emitter of Q5 drives the internal buffer Q7, which in turn feeds 10 MHz to the
3.8.4 VCXO Control Voltage (electronic tuning)

3.8.4.1 10 MHz LN Oscillator

The control voltage from the Servo PCB is routed to the Oscillator PCB terminal E9. From here the voltage is fed to CR1 via the resistor network made up of R50,51, and 52. CR2 is a reversed bias varicap, capable of electronically tuning the frequency of the crystal (Y1). The trim range of the crystal is designed to compensate for crystal aging over a period of several years, as well as temperature compensation of the Oscillator over its entire temperature range.

C7 and C8 match the Crystal Tuning Sensitivity to the varicap (CR1). C6 mechanically tunes the crystal center frequency and can be used to compensate for crystal aging during maintenance.

3.8.4.2 5 MHz LN Oscillator

The circuit functions very similar to the 10 MHz unit, the major difference is that an integrator stage (U1) has been added, resulting in a slower loop time constant. This feature takes full advantage of the crystal's outstanding reduced phase noise close to the carrier frequency. The interconnection of the Servo PCB, as well asthe Servo modification, and the 5 MHz LN Oscillator are shown in Figure 3-4.
3.9 SYNTHESIZER A5. (Schematic Drawing No. 703-218).

The 10 MHz signal from the crystal oscillator is applied to the input of a frequency tripler consisting of Q3, Q4 and associated circuitry. The 30 MHz signal is capacitively coupled through C13 to transformer T1. The 127 Hz from the Servo assembly is injected into the rf signal via varactor CR6. The interaction of CR6 with the tuned tank circuit on the primary of T1 serves to phase modulate the rf at a 127 Hz rate. The secondary of T1 is center tapped to provide a split phase signal that drives the bases of Q5 and Q6. The result is a 60 MHz signal that is amplified by Q7, Q8 which are class A inverting amplifiers.

A portion of the 10 MHz signal from the crystal oscillator is applied to the base of Q2. Q2 converts the sinewave to a TTL compatible trigger signal. Power for the TTL circuits is provided by the voltage regulator VR1. VR1 is a 3 pin, +5 V regulating IC. The 10 MHz TTL signal is divided down in U2 and U3, and recombined in U1. The final TTL signal from U1 is a 5.3125 MHz signal. This 5.3125 MHz signal is mixed with the 60 MHz output of Q8, and routed to the Step Recovery diode in the Resonator circuit.

Figure 3-4. Interconnection of Servo PCB, Servo modification, and 5 MHz LN Oscillator

SECTION IV

MAINTENANCE, TROUBLESHOOTING, AND REPAIR

4.1 INTRODUCTION

This portion of the manual provides procedures for performing maintenance on the FRK-()LN (5 \& 10 MHz).

NOTE

If the unit should require service within the warranty period, contact Ball Corporation, Efratom Division for repairs. Refer to warranty page (i) for addresses and phone numbers of the repair center closest to you.

4.2 TEST EQUIPMENT

The required test equipment to ensure normal operation is listed in Table 4.1. Test equipment other than those items listed may be used, providing that the substitute equipment meets or exceeds the "Minimum Use Specifications" as listed in Table 4.1. If the required test equipment or its equivalent is not available, it is recommended that the unit be sent back to the Efratom factory whenever service is required.

Table 4-1: Required Test Equipment - Performance Tests \& Trouble-shooting (TS)

INSTRUMENT DC Power Supply	REQUIRED CHARACTERISTICS Output Voltage: 0 to 30 Vdc. Output Voltage: 2.0 Amps Min.	USE Perf. Test	MODEL (or equivalent) Hewlett-Packard 6433B or 6296A
Oscilloscope	10 MHz	Perf. Test	Tektronix 465
DMM (Digital multimeter)	Voltage Range: 0 to 30 Vdc Accuracy: $\pm 1.25 \%$ iv, Resistance Range: 0 to 150 Ohms	Pert. TestTS	Fluke 8000A or 8020A
RF Voltmeter	10 MHz , true rms	Perf. Test/Ts	Racal Dana 9300B
Freq. and Time Interval Analyzer	Internal Ref. Frequency: 10 MHz , $\pm 1 \mathrm{E}-12$, Stability: parts in 10^{12}	Perf. Test	Hewlett-Packard 5371A or 5372A (App. Note 358-12)
Phase Comparator	Analog voltage output	Perf. Test	Hewlett-Packard K34-59991A
Precision Potentiometer	500K	Perf. Test	
Resistive Load	Feed-thru type, 50 ohms	Perf. Test	Hewlett-Packard 10100C
Timer	Capable of indicating 1 to 15 mins.	Perf. Test/TS	Any timeplece
Ref. Freq. Standard	Output: $10 \mathrm{MHz}, \pm 2 \mathrm{E}-12$ Accuracy	Perf. Test	Must be traceable to NIST (1)
Linear Recorder	0-10 Vdc Full Scale, 1-10 cm/hr	Perf. Test	Tracor 888
Temp. probe	Capable of measuring $-50^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$	Perf. Test	Fluke 80T-150
Frequency Counter	5 MHz .125 MHz	Perf. Test/TS	Fluke 1910A
Decade Resistance	$0>9.999999$ Mohm	Perf. Test/TS	I.E.T. Model RS200
Mixer/IF Amp.	Low noise, wideband limiting amplifier	Perf. Test	HP K79-59992A

(1) Efratom Modular Frequency System with interiace to a GPS receiver recommended.

4.3 PERFORMANCE VERIFICATION TESTS

4.3.1 Output Level Test

(1) Connect the UUT as shown in Figure 4-1.
(2) Apply dc power and allow the UUT to stabilize (> 10 minutes).
(3) Measure output level with a ri voltmeter, using a 50 ohm resistive termination. Record the voltage level of output.
(4) Observed voltage level must be 1 Vrms. $\pm 10 \%$.

Figure 4-1. Output Level Test Configuration

4.3.2 Frequency Offset Test

(1) Connect the Unit (UUT) and the test equipment as illustrated in Figure 4-2. (As an alternative, the HP5371A may be used to measure frequency offset. Contact a HP field engineer for details.)
(2) Adjust chart recorder pen position to center scale for 0 volts input.

Figure 4-2. Frequency Offset Test \& Long-term Stability Test Configuration
(3) Ensure that the equipment has had sufficient time to warm-up. (The UUT requires 1 hour to stabilize.)

NOTE
The maximum temperature fluctuation must not exceed $2^{\circ} \mathrm{C}$.
(4) Monitor phase comparator output voltage on the chart recorder for 15 minutes. Calculate the the fractional frequency offset ($\Delta \mathrm{f} / \mathrm{f}$) from the phase comparator output voltage change over time $(\Delta \mathrm{V} / \Delta t)$ according to the equation:
Fractional Frequency Offset $=\frac{\Delta V}{\Delta t} \frac{1}{10 \mathrm{MHz} \cdot V_{p-p}}$

Where: $\Delta \mathrm{V} / \Delta \mathrm{t}=$ Slope of phase comparator output in volts/sec over a 15 min . interval (t in sec.).
$V_{p-p}=$ Output voltage swing of phase comparator for 360° phase shift.
For the HP K34-59991A, the fractional frequency offset $=\frac{\Delta V}{\Delta t} \times 5 \mathrm{E}-8 \mathrm{sec} / \mathrm{volt}$.
(5) Verify that the fractional frequency offset is within the required limit.

4.3.3 Frequency Retrace Test

(1) Connect the UUT as shown in Figure 4-2.
(2) Apply dc input power to the UUT.
(3) Allow at least 1 hour for the UUT to stabilize. Measure and record the output frequency offset per Section 4.3.2, Step 4.
(4) Disconnect input power to the UUT for 24 ± 2 hours.
(5) Apply dc input power to the UUT.
(6) After one hour of operation, measure and record the output frequency offset per Section 4.3.2, Step 4.
(7) Determine the absolute value of the difference between the offsets marked in Step 3 and Step 6. The difference must be $\pm 2 \mathrm{E}-11$.
4.3.4 Short-term Stability (Root Alian Variance) Test
(1) Connect the UUT as shown in Figure 4-3.

NOTE:
The 1 sec . Allan Variance of the Adjustable Frequency Standard must be much better than the 1 sec . Allan Variance of the UUT.

Figure 4-3. Short Term Stability and Signal Output Tests.
(2) Apply dc input power. Allow UUT to stabilize (about 1 hour).
(3) Refer to the HP 5371A/5372A manual and Application Note 358-12, for specific details regarding measurement of Root Allan Variance using the HP5371A/5372A. If necessary, contact local HP field engineer for assistance. Tune HP 105B to produce 10 Hz IF frequency. Measure the root Allan Variance (A.V.) at 1.0 second using 100 data samples. The measured A.V. must be $\leq 3 \times 1 \mathrm{E}-11$ (for FRK-H. Since the dominant source of frequency instability at 1 sec . through 100 sec. is white FM noise, root Allan Variance at 10 sec . and 100 sec . can be calculated using the expressions:

$$
\begin{aligned}
& \text { A. } V_{(1-10 \text { soc. })}=A \cdot V_{(t-1 \text { soc. })} / \sqrt{10}
\end{aligned}
$$

The calculated A.V. for 10 sec . must be $\leq 1 \mathrm{E}-11(4 \mathrm{E}-12$ for $\mathrm{FRK}-\mathrm{H})$. The calculated A.V. for 100 \sec must be $\leq 3 \mathrm{E}-12$ (1E-12 for FRK-H).

4.3.5 Long-term Stability Test

Long-term stability refers to slow changes in the average frequency, with time due to secular changes in UUT physics and or electrical circuitry. Long-term stability is usually expressed as fractional frequency offset ($\Delta f / f)$, for a given period of time. The daily fractional frequency offsets can be plotted to show the long-term stability.

NOTE

The long-term stability test should be performed only after the UUT has been operating continuously a minimum of $\mathbf{4 8}$ hours. The frequency of the UUT should be measured and recorded each day to establish the drift rate.
(1) Connect the equipment as shown in Figure 4-2.
(2) Per Section 4.3.2, Step 4, compute and record the fractional frequency offset every 24 hours over a period of 15 days.

NOTE
It is recommended to plot the daily offset graphically and use this piot to estimate long-term aging (drift rate).
(3) After completion of 1 month of aging, compute the drift rate of the UUT over the 1 month period.
(4) If the drift rate over 1 month is $\leq 4 \mathrm{E}-11$ (1E-11 for FRK-H), the UUT has passed.
(5) If the drift rate is $\geq 4 \mathrm{E}-11$ (1E-11 for FRK-H), the UUT has failed and must be retested (repeat step 2).
(6) Depending on the off-time since the last operation, the environmental exposure, and the repairs performed, the unit may need to repeat this test a second time before meeting the original manufacturer's specifications.

4.4 FIELD MAINTENANCE, TROUBLESHOOTING, AND REPAIR

4.4.1 FIELD MAINTENANCE

Field maintenance consists of compensating for crystal aging and frequency adjustment. These are routine adjustments that may be made periodically to compensate for aging effects.

4.4.1.1 Crystal Aging Compensation

NOTE
The effects of crystal aging can be seen on a voltmeter. Attach a voltmeter probe to the crystal volts output monitor line of the FRK. A meter indication of $<+4 \mathrm{Vdc}$ or $>+12 \mathrm{Vdc}$, indicates an adjustment of the crystal oscillator base frequency is required.
(1) Ensure that the UUT has been operating continuously for at least 1 hour.
(2) Locate the crystal trim adjustment on the FRK.
(3) Unscrew the Philips head screw plug that acts as the adjustment access cover. The trimmer capacitor adjustment screw will now be visible.

NOTE
For the 5 MHz LN unit COUNTERCLOCKWISE rotation of the adjustment will INCREASE the control voltage, while CLOCKWISE rotation will DECREASE the control voltage.
For the 10 MHz LN unit CLOCKWISE rotation of the adjustment will INCREASE the control voltage, while COUNTERCLOCKWISE rotation will DECREASE the control voltage.
(4) Using a non-metallic alignment tool, SLOWLY adjust the trimmer capacitor as necessary to obtain a +8 Vdc indication on a meter.
4.4.1.2 Frequency Adjustment
(1) Monitor the fractional frequency offset per section 4.3.2.
(2) Adjust POT (R21) on power supply board (accessed through baseplate) to obtain a fractional frequency offset that is within the required limits.

4.4.2 TROUBLESHOOTING AND REPAIR

Troubleshooting and repair consists of testing and repair of the FRK. This section contains information on fault identification and removal, repair, replacement, and calibration of the assemblies of the FRK.

NOTE:
THESE PROCEDURES ARE NOT ROUTINE ADJUSTMENTS AND PERFORMING THEM SHOULD BE CONSIDERED ONLY IN THE EVENT OF UNIT FAILURE.
a. Troubleshooting Flowcharts

A series of flow charts is provided to aid in the isolation of faults. Flowcharts are presented in logical fault isolation order and must be performed in the proper sequence given. The troubleshooting/repair procedures for the various subassemblies of the FRK are presented after each flowchart and are designed to permit the repair technician to identify the fault and replace and/or repair the subassembly.

CAUTION

All FRK disassembly operations must be performed with power removed from the unit. Disassemble assemblies only as needed to make repairs.
(1) Detach the cover from the FRK assembly by removing $S \times 2 \mathrm{~mm}$ screws on the connector face of the unit, then remove four 2 mm screws that hold the bottom of the cover to the baseplate (see Figure 4-4). Once all six retaining screws are removed, hold the baseplate while gently pulling on the cover (it may be necessary to move the cover slightly from side to side as the FRK internal assembly is removed from the case).
(2) Remove any of the outside PCB assemblies by removing the M2x6 screws that fasten the boards to the FRK frame at each comer (the servo and synthesizer boards have additional screws that must also be unfastened).
(3) Once the mounting screws are removed, label all wires and coax (shielded wire) connections, and then remove each one (a soldering iron is required).
(4) Disassemble the baseplate of the FRK by removing the lamp inspection cover and all other screws on the outside face of the baseplate. This frees the baseplate from the frame.

NOTE
The Q1 Pass Transistor will still be connected. Pulling the baseplate away from the frame rapidly may unintentionally break the wire connection of the transistor.

Figure 4-4. FRK Baseplate
(5) The lamp board assembly and the metal container that is the exterior of the resonator assembly are located inside the frame channel. These two assemblies are accessed by removing four M2x6 screws from the four nut blocks that are located inside the frame channel. The resonator board is located inside the mu-metal canister of the resonator assembly. Figure $4-5$ is a wiring diagram that illustrates how the FRK boards and the physics package are connected together.
(6) Before the lamp assembly can be removed from the baseplate end of the FRK unit, all wires must be disconnected from each end of C1 and C2. These feedthrough capacitors (which are frame mounted) must be removed completely from the frame. Once this has been accomplished, removal of the two M2x6 screws at the opposite corners of the lamp PCB allows it to be lifted away from the interior frame channel.
(7) Remove the resonator assembly from the connector end of the unit by unsoldering the 10 wires that connect the resonator to the other board assemblies of the unit. Disconnect the wires from the locations shown in Table 4-2.

Table 4-2. Resonator Disconnect Points

Servo Bd.	Power Supply Bd.	Synthesizer Bd.
A1E1	A3E21	A5E6
A1E5	A3E22	A5E7
	A3E23	
	A3E24	
	A3E25	
	A3E26	
	A3E27	
	A3E28	

(8) Remove the M2x6 screws at each corner of the resonator assembly PCB, allowing the entire resonator assembly to be removed from the interior frame channel.
(9) The inner shield lid of the resonator can is assembled to the can with a tight mechanical fit. The lid is removed by gently tapping around the circumferance of the lid's exposed lip.
(10) Separate the resonator assembly's PCB from the inner shield can by removing the three M2 nuts spaced around the light entry hole in the PCB.
(11) Having completed these steps, the resonator housing, with the heater control PCB attached, can be removed from the inner shield can for service.

The FRK can now be visually inspected for burned components or broken connections. Placed on a test bench and powered up, signal traces can also be obtained from the test points on the various board assemblies (refer to Section 4.4.2.5, Detailed FRK Circuit Descriptions).

NOTE
Disassembly of the FRK should be performed only to to the level necessary to identify a fault (or faults). Excessive disassembly may introduce other problems into the unit, making it impossible to repair.

After repairs have been completed, and the FRK reassembled, refer to Section 4.3 for Performance Verification Tests that must be performed before the FRK is returned to service. Refer to Section 4.4.2.6 is alignment is required for any of the repaired or replaced assemblies.

If troubleshooting has indicated that the FRK assembly has failed and the assembly must be repaired instead of being replaced, the following sections provide repair guidelines.

SN6WRMAP3 SOLDER, per QQ-S-571, and a 35 to 40 watt soldering iron should be used to accomplish the soldering that might need to be done on the FRK.

CAUTION

Excessive heat can cause the etched circuit wiring to separate from the board material.

If it becomes necessary to solder in the general area of any of the high frequency contacts in the unit (terminal points), clean the contacts immediately upon completion of the soldering.

The adjustments, repair, or alignments required by the fault isolation flowcharts should be followed by the retesting of the procedure that led to the fault isolation to ensure the unit is functioning as required.
d. Overall FRK Troubleshooting (Faull Isolation Flowchart)

Figure 4-6 is the overall troubleshooting flowchart that should be followed to locate a fault in the FRK unit. For additional information, refer to the assembly drawings and schematics presented in Appendix B, and to the text in the following sections that describes the operation of the major FRK boards and circuits.
(1) Rubidium Lamp Replacement

Although this is seldom a cause for failure in the FRK (refer to 4.4.2.5 (2) for symptoms), the Rubidium lamp is replaceable. The Rubidium lamp is accessed by removing the two screws holding the Lamp Cover Plate to the baseplate (refer to Figure 4-8). A slotted access plate is beneath the cover plate. Once the access plate has been removed, the base of the lamp housing is visible.

CAUTION

The lamp housing is at the electrical potential of the unit ($28 \mathrm{Vdc} \mathrm{)} \mathrm{and} \mathrm{a} \mathrm{short} \mathrm{will}$ occur if an attempt to remove the lamp is made with power applied to the unit. The lamp housing is extremely hot, as well. Extreme care must be exercised when removing the lamp to avoid burns.

Once all power to the unit is off, carefully unscrew the rubidium lamp and lift it from the housing (use a pair of needle nose pliers for this task). Make sure the replacement lamp is clean and that its surface is tree of any oils or grease and screw the bulb into the housing. Once the bulb is firmly seated in the housing, replace the access plate and the Lamp Cover Plate, and replace the two screws previously removed.

Apply power to the FRK and, after allowing sufficient warm-up time, run a performance test to ensure that the unit is fully functional.

Figure 4-6. FRK Troubleshooting Overview

4.4.2.1 Detailed FRK Circuit Descriptions

a. Resonator Assembly (schematic 703-221)

The function of the resonator assembly is to compare the multiplied ard synthesized output frequency of the crystal oscillator to the ground-state hyperfine transition frequency of ${ }^{87} \mathrm{Rb}$. It provides a 127 Hz error signal to the servo board to lock the crystal frequency to the atomic transition.
(1.) Microwave Cavity - The microwave (resonator) cavity is constructed of silver plated copper and housed in a mu metal shield. It contains the rubidium resonance cell. The photocell is mounted in the bottom of the cavity and placed behind the Rb glass cell, directly in the light path of the Rb spectral lamp. The step recovery diode with coupling loop and the condenser assembly are located at the open end of the cavity. Cavity temperature is maintained by the resonator thermostat circuit. The C-field coil is wound on the outside of the copper microwave cavity.
(2.) Step Recovery Diode - The 60 MHz and 5.3125 MHz from the multiplier are summed at the output of the multiplier/synthesizer board and then applied to the step recovery diode. This diode, CR1, produces electromagnetic radiation having frequencies given by the expression $(60 \mathrm{n}+5.3125 \mathrm{~m}) \mathrm{MHz}$, where $\mathrm{n}=$ a positive integer and $m=$ an integer. The diode is part of a tuned coupling loop, tuned to the 114th harmonic of 60 MHz ($n=114$); the coupling loop is inside a microwave cavity that is tuned to the same frequency. The bandwidth of the microwave cavity assembly is wide in comparison with the bandwidth of the atomic transition ($<1 \mathrm{kHz}$), so that the atoms function as a narrow-band filter for the microwave signal. The diode can be replaced by gaining access to the light entry end of the resonator assembly PCB. An access hole in the PCB provides clearance to remove first the diode retaining screw and then the diode itself (refer to Figure 4-7).

Figure 4-7. Snap Diode Access Hole on Resonator Assembly
(3.) Photocell - The photocell current is proportional to the total light incident on the photocell CR2. Minimum current results when a microwave field corresponding to the Rb hyperfine frequency is applied simultaneously with pumping light. Photocell problems are unlikely (always check the lamp assembly and power supply first), but manifest themselves as instable lamp monitor dc voltages, or as sporadic noise on the servo board's TP1 resonance signal. The photocell is replaced as part of the complete resonator assembly.
(4.) C-Field Coil - The C-field coil is wound on the microwave cavity and provides a dc magnetic field (the C field) within the resonator cavity. Variation of this magnetic field allows fine tuning of the 10 MHz output frequency by shifting the Rb frequency hyperfine transition by the second order Zeeman effect. The "C-field" strength is determined by current from three sources:

R17 on the power supply board supplies a fixed current to the coil.
R21, the 24 turn potentiometer, on the power supply $P C B$, provides a variable current for frequency adjustment.

The temperature compensation circuit formed by Q2, Q3, R13 and R16 provides a current that varies with temperature. The power to heat the microwave cavity increases approximately 40 mW for every degree centigrade decrease of the ambient temperature. This results in a current change through resonator heater transistors Q2 and Q3, and through R13 on the resonator thermostat assembly. The voltage across R13 is routed to R16 on the power supply board and back to the Cfield coil. Decreases in ambient air temperature causes the voltage across R13 to rise, providing more C -field current, and raising the output frequency.

The most common C-field problem is an open winding. An ohmeter is used to check for this situation by removing power to the FRK and measuring from A3E27 to A3E19. A good C-field coil will give a reading of approximately 30 ohms.
(5.) Resnnator Thermostat (part of resonator board assembly, refer to schematic 703-221) - the resonator thermostat consists of U1, Q1, and associated circuitry on the resonator PCB, and Q2, Q3, and RT1 mounted on the resonator cavity housing. U1 is the temperature control element, Q1 is a current limiting element, and Q2 and Q3 are the heat source.

U1 and the resistive bridge network on its inputs form the temperature control section. E1 receives +12 Vdc from the power supply board to power this section. R5 and R7 form a fixed voltage divider that references U1, pin 3. Thermistor RT1 and the series combination of R1 and the temperature select resistor form a voltage divider on the other op-amp input, U1, pin 2. The feedback network of R8 and C4 serves to control U1's output response when the inputs reach equilibrium.

During the high power dissipation period of the warm-up cycle, the current through Q2 and Q3 must be limited to a safe level of $\sim 1 \mathrm{amp}$. This is done by sensing the current draw of Q2 and Q3 at R13. An increase in heater current causes an increase in vottage at the base of Q1. As Q1 turns on, it shunts a portion of Q2's base drive current to ground, allowing only the preset maximum current to flow. R11 and R12 form a voltage divider network that provides for the preset maximum current to be automaticaliy shifted up or down, depending on the heater supply voltage. This is done to maintain a reasonably constant power dissipation during warm-up over the range of input voltage to the FRK.

As the thermostat circuit reaches equilibrium, the voltage output of $U 1$ drops to a level that operates $Q 2$ in a vernier control mode. The current through Q2 and Q3 folds back to a nominal 100 mA . The current foldback reduces the voltage drop across R13 to the point where Q1 does not conduct and effectively drops out of the circuit.

The resonator assembly is protected from a runaway heater control problem by thermal fuse F1, mounted on the resonator cavity housing.

b. Lamp, Assembly A2, (Schematic 703-209)

The lamp assembly consists of the lamp oscillator circuit, the lamp housing assembly, the lamp thermostat circuit, and the rubidium lamp. The function of the lamp assembly is to ignite and maintain the electrodeless plasma gas discharge of the rubidium lamp, and to maintain the temperature of the lamp housing at approximately $115^{\circ} \mathrm{C}$.

The most common fault condition involving the lamp assembly is the generation of spurious noise on the unit output. This condition can be detected at TP1 of the servo board, where the lamp noise will cause severe disturbances to the resonance signal. If the disturbances are too severe, the unit may fail to lock. The spurious noise problem is very difficult to isolate due to the electro-mechanical aspects of the circuit and is typically remedied by replacing the entire lamp assembly. Occasionally, noise from the lamp can be eliminated by changing the oscillator frequency to a lower frequency, or by changing the rubidium lamp. The two most likely lamp failure modes are the loss of vacuum due to glass failure and Rb depletion. Glass failure will prevent lamp ignition (make sure the lamp oscillator circuit is not the cause of failure before lamp removal), whereas Rb depletion results in a whitish tint to the lamp light (another cause of this symptom is an improper lamp thermostat temperature). In case of Rb depletion and/or lamp thermostat failure, the FRK will not develop a resonance signal (refer to section 4.4.2.6, subsection h, Resonance Search).

NOTE
The loss of Rb cannot be detected by the decay of lamp voltage.
Lamp replacement is covered is Section 4.4.1.7 (1), FRK Lamp Replacement.
(1.) Lamp Oscillator - The lamp oscillator circuit is a modified Colpitts design consisting of Q2 as the active element, tank circuit L4 and C11 as the power transfer and primary resonant network, L3 as a secondary frequency control element, and associated bias circuitry.

Mechanical capacitor C11 provides for current/frequency adjustment of the oscillator and is accessible from outside the unit. Figure 4-8 illustrates the location of the adjustment port.

Figure 4-8. Lamp Adjustment Ports

Adjusting C11 tunes the oscillator's frequency over a range of approximately 70 MHz to 90 MHz . Within this range of adjustment there are specific optimum frequencies that should be used (refer to Section 4.4.1.7.2, Lamp Oscillator Tuning, part b, FRK Alignment Procedures). The operational frequency that is chosen is determined by finding the highest frequency setting that produces optimum ignition characteristics and noise free operation. In normal stabilized operation, the oscillator current draw from the regulated supply (E2) is a nominal 120 mA .
(2.) Lamp Thermostat - the lamp thermostat consists of U1, Q1, R5 and associated circuitry on the PCB, and Q3 and RT1 mounted on the lamp housing. U1 is the temperature control element, RT1 is part of the resistive bridge network at U1's inputs, Q1 is a current limiting element, and Q3 is the heat source element.

Op-Amp U1 is controlled by a balanced bridge circuit on its inputs. R3 and R6 form a fixed voltage divider that biases U1, pin 3. Thermistor RT1 and the series combination of R4 and R5 form the dynamic leg of the bridge. RT1 senses the temperature on the lamp housing and potentiometer R5 selects the stabilized temperature. The R5 potentiometer is accessible from outside the unit. Figure 4-14 illustrates the location of the adjustment port.

The operation of current limiter Q1 and heater transistor Q3 is essentially the same as the resonator thermostat circuit, which is discussed in detail in Section 4.4.2.5, part e.

c. Servo Board, Assembly A1 (schematic 10017)

The primary function of the servo circuit is to amplify and demodulate the photocell output to generate the crystal control voltage at E8 for the 10 MHz VCXO. The control voltage is derived by comparing the phase of the 127 Hz modulation signal with the phase of the photocell signal at E1 and E5. Secondary functions are to provide the monitoring signal for the Rb lamp operation at E4, the aiomic resonant lock circuit at E7 and the VCXO control voltage monitor at E9.
(1.) Preamplifier - The photocell output, (dc bias together with the 254 Hz error signal when the unit is in the normal locked mode of operation, or 127 Hz error signal while the unit is obtaining a lock), is routed to E1 and E5 on the servo board A1. E1 and E5 tie to the input of dual stage amplifier U1 at pins 5 and 6 respectively. The output of the first stage of amplification is capacitively coupled to the input of the second stage of amplitication (U1, pin 8) and directly coupled to E4 and U2-B, pin 5. E4 provides the Rb Lamp Monitor signal to the front panel connector.

U2-B senses the voltage at E4 and determines if the Rb lamp has ignited and if it is in "Correct Mode Ignition". Proper lamp ignition (<3 minutes after turn-on) will cause U2-B output, E11, to switch from <1 Vdc to $>15 \mathrm{Vdc}$. The E11 voltage is fed to the power supply (Board 3, E29), where it switches the regulated unit power from 22 Vdc to 17 Vdc .

The output of the second amplifier (U1, Pin 13) is connected to Test Point (TP) 1, the primary oscilloscope monitoring point of the FRK. U1, pin 13, is also capacitively coupled to U2-A, the 127 Hz active bandpass filter, and to U6, the 254 Hz active bandpass filter.
(2.) Reference Signal Generation - 127 and 254 Hz Reference Signals - CMOS oscillator/divider U3 on the servo board, provides the 127 and 254 Hz reference signals and the 127 Hz signal which modulates the if injected into the resonator. The primary oscillator frequency of 8.128 Khz is determined by C17, R19 and select-in-test resistor R20. The divider portion of U3 divides the primary oscillator frequency into the required 127 and 254 Hz signals. The 127 Hz reference signal is routed from U3, pin 4 to pin 11 of synchronous demodulator U4 and to pin 2, of U6, through the RC network R37/C24. The RC network R37/C24, the feedback network R38/C25, and the output RC filters (R39, C26, R40 on the servo board, and C2, R3, and C12 on the synthesizer board) serve to waveshape the 127 Hz signal into the sinewave that is coupled to the synthesizer to modulate the rf. R40 of the output RC filter is also used to adjust the modulation level to the multiplier and the phase of the correction signal at TP3.

The 254 Hz reference signal is routed from U3, pin 5 to pin 9 of synchronous demodulator U4. The 254 Hz reference signal is correlated with the photocell output to detect unit lock.

The dc voltage of approximately 6.8 Vdc generated by CR2 is also a reference signal. This DC level is used to bias the ac signals that are processed by U4 and U5, and to bias op-amps U6 and U5.
(3.) 127 Hz Signal Processing - As explained in the "pre-amplifier" section, the 127 Hz signal processing starts at the photocell inputs E1 and E5. U1-A and U1-B provide two stages of high gain amplification. The output of U1-B, pin 13, feeds both active bandpass filters, U2-A, the 127 Hz , and U6, the 254 Hz .

NOTE

For troubleshooting purposes it is usually best to control the rubidium loop manually. Connect a potentiometer of 10 Kohms , or more, across C22 on the servo board. Disconnect the wire soldered to E8 and connect this wire to the wiper of the potentiometer. This technique provides for manual control of the VCXO's output frequency and critical servo functions.

The servo correction signal is amplitude modulated onto a 127 Hz subcarrier that passes through the 127 Hz filter, U2-A. When the system is locked, this signal (TP-2) appears as a 254 Hz sine wave, with a noticeable 127 Hz component. From TP2, the signal is routed to the synchronous demodulator U4, pin 12.

U4 is a triple two-channel CMOS analog switch that functions as a synchronous amplitude demodulator. The 127 and 254 Hz reference signals at pins 11 and 9 respectively, control the synchronous switching of two of the switches. A third switch is controlled by the level of the signal at U4, pin 10, trom the lock detector circuit, U6, pin 8. U4, pins 5 and 13, receive the 6.8 Vdc reference level from CR2. When the unit sweeps near atomic lock, U4, pin 10 receives a "high" signal ($>12 \mathrm{Vdc}$) that switches the output of the 127 Hz filter U2-A to the output of the demodulator, U4, pin 15, for dynamic tracking. The demodulator output is monitored at TP3 and appears as shown in Figure 4-15.

The signal from U4, pin 15 is direct coupled to U5, pin 2 . U5 functions as the servo loop integrator. Its output voltage changes at a rate determined by the differential input voltage. For example, an input differential of -200 mV causes an output voltage change of $+200 \mathrm{mV} / \mathrm{sec}$. The change will continue until the differential input is nullified, (the crystal retums to center frequency), or until the Op amp reaches its maximum output voltage.

The output of the integrator, E8, is the crystal-control voltage that steers the frequency of the VCXO by means of a varactor diode in the oscillator tuning circuit. A portion of the integrator output is routed to the sweep control circuit at U6, pin 5.

TP-3 Normal Signal 1 volvdiv., 50 ms ./div.
Figure 4-9. Demodulator Output (Servo Board)
(4.) Lock Circuit - A portion of the photocell signal is applied to an input of the Lock Monitor circuit at U6, pin 12. U6-D, with its associated circuitry, forms a 254 Hz active bandpass filter that connects to pin 3 of the synchronous demodulator U4. The output signal at U4, pin 4 is coupled to U6, pin 9, and is monitored at TP6 (refer to Figure 4-10). With the unit locked, the negative offset at U6, pin 9 will cause the output at U6, pin 8 to go high. This provides the positive signal at U4, pin 10 that removes the sweep signal from the integrator, U5. It also biases Q1 into a conduct mode that provides the Lock Monitor signal at the front panel connector (pin H for the Winchestor connector, pin 5 for the 8 -pin connector with coax). When the unit is locked, the Lock Monitor line as a resistance of 150 ohms to ground. Otherwise the Lock Monitor is an open circuit.

Normal Signal 1 volvdiv., 1 volt/div, 2 ms ./div
Figure 4-10. Signal Waveform at TP6
(5.) Sweep Circuit - To allow the FRK to compensate for several years of crystal aging, in addition to frequency offsets of the crystal caused by environmental changes (e.g., temperature changes), the trim range of the oscillator is very wide compared to the width of the atomic resonance. To aid servo acquisition, the crystal frequency is swept over the entire trim range until atomic resonance can be detected.

This is accomplished by switching the integrator input (U5, pin 2) to $U 6$, pin 7 via U4 (the unit is unlocked when U6, pin 14 is low). U6-B functions as a high hysteresis voltage comparator. The trigger points are controlled by R51 and R52 and the voltage reference. The lower trigger point is approximately 1.5 Vdc , the higher trigger point is approximately 16 Vdc . If the output of U 5 is equal to or lower than the lower trigger point, the output of U6 becomes 0 Vdc , resulting in about a -. 7 Vdc differential to the integrator. With R24 $=1$ M and $\mathrm{C} 18=1 \mu \mathrm{~F}$ its output will rise $.7 \mathrm{~V} / \mathrm{s}$ until the upper trigger point of 16 Vdc is reached. At this point, the output of U 6 will go high, resulting in about a +.7 Vdc differential at the integrator input. This will decrease U5's output by $.7 \mathrm{~V} / \mathrm{s}$. The result is a sweep time of about 40 s . Due to the fast sweep, atomic resonance can be detected for only 100 ms at a time during each sweep cycle. Reliable transition from sweep to locked operation is facilitated by CR3.
d. Power Supply, board assembly A3 (schematic 703-254) - the internal power supply provides the unregulated, filtered voltages for the Rb lamp heaters, the crystal heater, and the resonator heaters, in addition to providing the filtered and regulated voltage to the unit's electronics. The input voltage line is fuse and diode protected against reverse polarity inputs.

The power supply board accepts the +22 to +32 Vdc input voltage at E 2 , and provides regulated +22 Vdc at E12, E17, and E18, until the Rb lamp ignites, at which time the power supply is switched to +17 Vdc . The switching occurs when U2-B, on the servo board, senses that the Rb lamp is ignited, in the correct mode, by the positive increase at U2-B, pin 5. The output of U2-B is routed to the power supply board at E29. The positive voltage increase provides reverse bias for CR6, effectively removing R24 from the circuit and setting the condition for the power supply output to be lowered to the +17 Vdc required for the internal circuits of the unit.
(1.) Regulated Power Supply - The +17 Vdc power supply consists of Q1 and U1 along with the components in their respective circuitry mounted on the power supply board and pass transitor Q1, which is mounted on the baseplate of the FRK.

The +22 to +32 Vdc input is routed across the 3 amp fuse (F 1) to the voltage divider circuit that consists of R5 and R7. The input voltage is dropped to approximately 3 Vdc , which is coupled through CR3 to U1, pin 2. Before power is applied, U1, pins 2, 3 and 6, were at ground potential. With 3 volts at U1, pin 2, and U1, pin 3 still at ground potential, the resultant offset causes U1, pin 6 to go low, turning on the power transistor Q1. The +17 volt line is fed back through CR4 and R9 to the reference zener diode, CR5. CR5 develops approxi-
mately 6.3 Vdc at U 1 , pin 2 . In addition, the 17 volt line is fed back to the voltage divider consisting of R6, R8 and R10 to apply a voltage to U1, pin 3 . The voltage divider determines the voltage ratio of the 17 volt line to the voltage reference diode CR5, thus setting the voltage level of the 17 volt line.

Transistor Q1 on the power supply board functions as a current limiter by sensing the voltage drop across R14. If the current through the pass transistor becomes excessive, Q1 begins to conduct, decreasing the emitter-base bias on the pass transisitor, thus limiting the current flow.
e. Crystal Oscillator (VCXO) Assembly (schematic 703-103-5) - the purpose of the 5 or 10 MHz oscillator is to provide a clean and stable output frequency to the output connector, and a 10 MHz signal to the synthesizer. To optimize the reduction of phase noise the crystal is selected to match the output frequency. The oscillator board contains the Voltage Controlled Crystal Oscillator (VCXO), the crystal oven andthermal control, and a buffer amplifier. The output signals are transformer coupled to the output connector J1 and to the synthesizer circuit. In the case of the $5 \mathrm{MHz} \operatorname{Ln}$ Oscillator a doubler circuit is used to generate the 10 MHz signal to the Synthesizer.
(1.) Crystal Oscillator - the oscillator incorporates an AT Cut 3rd-overtone crystal, with an operating temperature of about $80^{\circ} \mathrm{C}$. The crystal is mounted in the crystal housing assembly, which is heater controlled to the operating temperature of the crystal. The frequency adjustment is via L2, C6, 7 and 8 . L2 is used for coarse adjustment and C7/8 for fine adjustment of the sweep range and center frequency. Roughly a 1E-6 adjustment is expected for a crystal control voltage range of 1.0 to 14 volts. These voltages correspond to the sweep mode of the crystal control voltage, which is approximately 1.0 to 14 volts.

The gain stage of the oscillator is formed by Q2, with C4 and L1 selected to provide a resonant frequency of about $70-80 \%$ of the nominal crystal frequency. The output buffer stage has Q3 as a source follower to buffer the crystal network from the loading of the following buffer stages.

The AGC stage utilizes Q1 to form an AGC circuit, which controls the output voltage of the oscillator at the source of Q3 to approximately 1.2 Vpp . C5 is used to adjust the AGC voltage at the collector of Q1 to 0.5 Vdc for nominal conditions. This provides the capability of decreasing or increasing the oscillator loop gain by adjusting the bias condition of Q1.
(2.) Crystal Buffer Section - the output buffer amplifier section consists of Q5 and Q4.

Q6 is a FET device used as a high input impedance decoupling stage between the oscillator circuit and the output drivers. The 10 MHz signal at the gate of Q 6 is a nominal 1.4 v.p.p.

The cascade arrangement guarantees maximum decoupling between input and output. T1 is tuned to 5 or 10 MHz by C16, 17 and matches the output impedance of Q4 to the nominal 50 ohm load on J1.

The 10 MHz signal for the Synthesizer is generated by either the frequency doubler Q6, 7 (driven by complimentary signals of Q5), or by the buffer formed by Q7, depending on the configuration. T2 is tuned to 10 MHz via C22.
(3.) Crystal Thermostat - the crystal oven thermostat circuit consists of U2, Q8, and associated circuitry on the P.C.B, and Q9 and RT1 mounted on the oven assembly. U2 is the temperature control element, Q8 is a current limiting element, and Q9 is the heat source.

U2 and the resistive bridge network on its inputs form the temperature control section. Thermistor RT1, mounted on the crystal oven, is the sensing element in the input network, R40 and R43 set the reference voltage. R42 functions as the temperature select component. During warmup, the oven heater transistor Q1 would be destroyed by runaway current if not for Q8, which serves as a current limiter. In the current limit mode, Q8 senses the voltage across R49 to determine Q1's emitter current. As the R49 voltage approaches $\sim .4 \mathrm{Vdc}$, Q5 starts conducting, reducing the voltage at Q9's base to the level required to throttle Q9's current to a nominal 400 mA . The power delivered to the oven in the warm-up mode is kept constant over the range of supply voltages by the R46, R48 network. The higher the supply voltage, the less maximum current is allowed in Q9.

The synthesizer assembly contains a frequency multiplier circuit and a frequency synthesis section. Q3 through Q8 make up the multiplier section and Q2, U1, and U2 perform the synthesis.
(1.) Multiplier - the 10 MHz signal from the crystal oscillator is applied to the input of a frequency tripler consisting of Q3, Q4, and associated circuitry. C9 and L3 are tuned to 30 MHz . R12 limits the Q of the tank to about 30 . The 30 MHz signal is capacitively coupled through C13 to transformer T1. At this point, the 127 Hz modulation signal, biased at a nominal 6.5 Vdc , comes into E 5 and modulates the rif signal via varactor CR6. The interaction of CR6 with the tuned tank circuit on the primary of T1 serves to phase modulate the if at a 127 Hz rate. The secondary of T1 is center tapped to provide a split phase signal that drives the doubler circuit of Q5 and Q6. The result is a 60 MHz signal that is amplified by Q7 and Q8. C17/L5, C21/L8, and C27/ L 10 are tuned to 60 MHz . Q7 and Q8 are Class A inverting amplifiers. The 60 MHz signal at E6 drives the snap diode in the physics package through a coax cable. C29 matches the coax-cable to the driver stage. R31 and R34 provide the bias voltage for the snap diode.

Refer to Figure 4-11 for waveform and amplitude illustrations for the multiplier circuit's test points (T.P. 2, 3, $4,5,6,8$).

The adjustable parameters of the multiplier circuit include L3, T1, L5, L8, L11, C29, and R34. Adjustments of these component values should not be necessary except if other components are replaced during repairs. In this event, see section 4.4.2.6, subsection f., which covers the alignment procedures for the synthesizer, board A5.
(2.) Synthesizer Circuitry - the 10 MHz input signal from the crystal oscillator is applied to the base of Q2. Q2 converts the sine wave input to a TTL compatible trigger signal. This signal is coupled into U2-A, Pin 1. U2-A functions as a divide by " 2 " block, with a 5 MHz TTL signal coming out on pin 3 . One branch of the 5 MHz signal goes to U2-B, pin 13. U2 functions as a divide by "16" block, producing a 312.5 KHz TTL signal output from pin 8 and passing to U1. U1-C is an "exclusive OR" gate which mixes the 5 MHz and 312.5 KHz input signals to produce an output at pin 8 that contains the upper and lower mixing products, 4.6875 MHz and 5.3125 MHz . The signals are then routed across tuned tank L11/C30. This tank is tuned at 5.3175 MHz and selects this frequency from the two that are injected. The capacitive coupling of C26 and the filtering action of L11/C30 converts the TTL signal at TP7 into a sine wave signal referenced to ground at TP-9. Finally, the signal leaves TP-9 and is summed with the 60 MHz at E6, from which both frequencies are routed to the step recovery diode.

Refer to Figure 4-11 for waveform and amplitude illustrations for TP1, TP7, and TP9 of the synthesizer circuit.

NOTE: all signals monitored with X 10 oscilloscope probe.

SERVO BOARD

TP-3: normal correction signal $500 \mathrm{mV} / \mathrm{div} ., 2 \mathrm{~ms} / \mathrm{div}$

TP-3: 20 Mohm resistor from C18 to Ground $500 \mathrm{mV} / \mathrm{div}, 2 \mathrm{~ms} / \mathrm{div}$

TP-3: 20 Mohm resistor from C 18 to +17 Vdc $500 \mathrm{mV} / \mathrm{div} ., 2 \mathrm{~ms} / \mathrm{div}$.

SYNTHESIZER BOARD (Synthesizer Section)

TP-1 dc coupled, 0 Vdc at center scale, $1 \mathrm{~V} / \mathrm{div}$., $50 \mathrm{~ns} / \mathrm{div}$.

TP-7 dc coupled, 3.0 Vdc at center scale, $1 \mathrm{~V} / \mathrm{div}$., $500 \mathrm{~ns} / \mathrm{div}$.

TP-9 normal signal $500 \mathrm{mv} / \mathrm{div} ., 100 \mathrm{~ns} / \mathrm{div}$.

SYNTHESIZER BOARD (Multiplier Section)

TP-2 Normal signal, 6.5 Vdc center scale, $50 \mathrm{mV} / \mathrm{div}$., $2 \mathrm{~ms} /$ div., 20 MHz B.W. limit,

TP-5 normal signal $500 \mathrm{mV} / \mathrm{div} ., 20 \mathrm{~ns} . / \mathrm{div}$.

TP-6 normal signal 1V/div., $20 \mathrm{~ns} /$ div.

TP-4 normal signal 500 mV ./div., $50 \mathrm{~ms} /$ div.

TP-8 normal signal 5V/div., $20 \mathrm{~ns} / \mathrm{div}$.

Figure 4-11. Waveform and Amplitude Traces for Servo and Synthesizer Boards.

4.4.2.2 FRK Alignment Procedures

NOTE
It is not necessary to perform all alignment procedures each time the FRK is repaired. Perform only those alignments that pertain to the board, or assembly, that has been repaired or replaced.
a. Regulated Voltage Supply:
(1) Before power is applied to the FRK, connect a voltmeter across C2 of the Power Supply, Assembly A3. Observe the meter while applying power. At the instant of turn-on the voltmeter should read ~ 23 Vdc . Within 3 minutes the lamp should ignite, switching the regulated voltage to a lower level. If the unit has been warmed up previously to this test, the lamp will ignite instantly upon applying power and no voltage transition will be seen. The regulator output voltage at C2 should be $17.3 \mathrm{Vdc} \pm .3 \mathrm{~V}$. after lamp ignition.

$$
+1734 v
$$

(2) If the measured voltage falls outside the range of $17.3 \mathrm{Vdc} \pm .3 \mathrm{~V}$, an adjustment will be necessary. Locate R6 on the power supply board, assembly A3. Increasing the value of R6 will increase the regulator output voltage.
b. Lamp Temperature Setting:
(1) Apply power to the FRK and allow at least 15 minutes for temperature stabilization.
(2) Remove the lamp access cover from the base plate.
(3) Measure the temperature of the lamp housing by placing a temperature probe next to the rubidium lamp. Allow time for the temperature probe readings to stabilize. Turn off the power to the unit momentarily and record the probe reading. Remove the probe and reapply power. The temperature measured should be a nominal $113^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$. If the recorded temperature is out of specification, an adjustment is necessary. Locate the temperature access hole in the baseplate and adjust A2R5. Repeat the temperature measurement and adjustment step until the proper lamp housing temperature is obtained.
c. Lamp Oscillator Tuning
(1) Tuning the lamp oscillator requires that the regulated voltage supply to the lamp board (C2-1) be interrupted and a 0 to 500 milliamp meter be installed in series.
(2) Locate the frequency access hole in the baseplate and insert an isolated tip driver until mechanical capacitor C11 is engaged.
(3) The oscillator frequency can be monitored using a scope probe as an antenna. By holding the probe in close proximity to the rubidium lamp the probe signal can drive a frequency counter directly or after amplification from an oscilloscope buffer amplifier.
(4) Apply power to the unit and allow at least 15 minutes for stabilization. Adjusting C 11 will change the oscillator current and frequency.
(a) Set the lamp oscillator current to the low side of 125 to 145 mA , to a point that gives an oscillator frequency of $91.5,87.0,84.5,79.0,78.5,77.5,76.5,71.0$ or 69.5 MHz . After setting the frequency, remove power to the unit for 5 minutes. Then re-apply power and verify normal ignition and operation.
(b) If parasitic oscillations (i.e. spurs) appear at A1TP1 (see 4.4.1.7.1 (2)), set the lamp oscillator frequency as far away from the parasitic point as practical.
d. Resonator Temperature Setting:
(1) Apply power to the FRK and allow at least 15 minutes for temperature stabilization.
(2) Locate the resonator temperature probe hole in the power supply board, assembly A3 (see Figure 4-19). Remove any foam or other material that prevents clear vision of the glass resonator cell through the probe hole. Install the temperature probe and read the temperature. The resonator temperature should be $+74^{\circ} \mathrm{C} \pm 3^{\circ} \mathrm{C}$.
(3) If the temperature reading does not conform to the specified range, an adjustment is necessary. Locate R15 on the power supply board, assembly А3. Decreasing the value of R15 will increase the temperature of the resonator. Allow 5 minutes of stabilization time between temperature readings and adjustment steps.
e. Crystal Oscillator, Board Assembly 4

CRYSTAL OVEN TEMPERATURE SETTINGS

(1) Apply power to the FRK and allow at least 15 minutes for temperature stabilization.
(2) Locate the crystal oven assembly on the crystal oscillator board, assembly A4. There is a label on the top of each oven assembly and a slotted crystal inspection window. The label and the crystal are marked with a turning point temperature in ${ }^{\circ} \mathrm{C}$. The oven temperature, as monitored with a temperature probe, should be set at or slightly above the temperature marked on the crystal to optimize unit temperature coefficient. In the event no temperature reference can be found on the crystal, set the oven within $+75^{\circ} \mathrm{C}$ and $+82^{\circ} \mathrm{C}$.
(3) If the reading obtained with the temperature probe does not correspond with the parameters described in Section 2., an adjustment is required.
(4) Locate R42 on the crystal oscillator board, assembly A4. Increasing the value of R8 will lower the oven temperature. Allow 5 minutes of temperature stabilization after changing the setting of R8/ R42 before monitoring the result.

TRANSFORMER TUNING

$$
\text { I thank they meas } T_{1}
$$

(1) Connect an oscilloscope probe to $\mathrm{J1}$ (if connector). Slowly turn the slug for($\$ 3$ until the 10 MHz signal at J 1 reaches a minimum.
(2) Connect an oscilloscope probe at E6. Adjust T2 for a maximum signal.

TRIM RANGE SETTINGS

Before correcting the trim range, the crystal oven needs to be set to the correct temperature (see above). Allow >1 hour of warm-up at the correct crystal temperature setting before correcting the trim range. Disconnect the yellow wire that is terminated at E9 and fold it back out of the way.

NOTE
Do not allow the bare end of the wire to touch the chassis or other circuitry.
(1) Adjust C 6 in 3 or 4 turns from flush. Install a 27 pF capacitor in C 8 . Tack in a select inductor into L2. (Start with a 25 windings inductor.)
(2) Check for unit oscillation by measuring AGC voltage at the collector of Q1. (3 V to .7 V).
(3) Run the output of the board (from E4 and E5) into a frequency counter. (Function: frequency; resolution: $1 \mathbf{~ H z}$ - house standard, or 10 MHz unit run into back.)

Run a jumper from E8 to ground. (This will establish the low end of the frequency range.)
Run the same jumper from E8 to a 20 volts line. (This will establish the high end of the frequency range.)

Satisfactory tuning requires a range greater than or equal to 2.5 Hz for a 5 MHz unit, 5 Hz for a 10 MHz unit.
(4) C8 sets the range. (Increasing C8 increases the frequency sweep range. It also decreases the board oscillation frequency).

L 2 sets the center frequency. (Increasing L2 windings decreases the board oscillation frequency.)

The frequency must be set so that the center of the frequency range is 5.000000 MHz , or 10.000000 MHz .
(5) Peak transformer T 1 so that the output from E 6 is greater than 2.5 V peak-to-peak.
(6) Peak transformer T2 and select resistor R19 (100 ohms) so that the output from E4 into a 50 ohm load is about equal to 3.0 volts peak-to-peak.

The final step is to reconnect the yellow wire to terminal E9.
f. Synthesizer Board Alignment, Assembly A5

TRANSFORMER TUNING
(1) Connect a dc voltmeter to E6 through a 10 Kohm isolation resistor. Apply power to the FRK. Adjust potentiometer R34 for the maximum dc voltage. Tune inductors L3, T1, L5 and L 8 in sequence for the maximum dc voltage at E 6 .
(2) Attach an oscilloscope probe to TP9. Tune L11 for a maximum signal of 5.312 MHz .

OUTPUT COAX MATCHING

(1) If the synthesizer has been replaced, transfer the C29 value from the old board.
(2) If the Resonator assembly has been replaced, select C29.
(3) Connect a dc voltmeter to E6 through a 10 Kohm isolation resistor. Apply power to the FRK. Adjust potentiometer R34 for the maximum dc voltage.
(4) Select C 29 for the maximum dc voltage at E 6 .

RESISTANCE TUNING

Refer to the Synthesizer board alignment procedure under "Resonance Search."

LAMP VOLTS SETTING

(1) Monitor E4 with a dc voltmeter. Apply power to the FRK and allow at least 15 minutes for temperature stabilization.
(2) Locate R4 on the servo board. Adjust R4 for a nominal $11 \mathrm{Vdc} \pm 2$ at E 4 .

127 HZ REFERENCE ADJUSTMENT

(1) Monitor TP4 with a $\times 10$ oscilloscope probe. The probe will drive a frequency counter directly, or an oscilloscope with a buffered output to the counter.
(2) Locate R20 and adjust for a frequency counter reading of $127 \mathrm{~Hz} \pm 1 \mathrm{~Hz}$.

MODULATION AMPLITUDE

(1) Monitor E6 with an oscilloscope.
(2) Adjust R58 for a signal amplitude of $400 \mathrm{mV} \pm 50 \mathrm{mV}$ peak to peak.
h. Resonance Search

BANDPASS FILTERS (This procedure is recommended only for replacement boards)
(1) Disconnect power to the unit.
(2) Locate R16 and R70 potentiometers on the servo board, assembly A1.
(3) Adjust both potentiometers to a point approximately midway in their adjustment range. Lock should be obtained. If lock does not occur, move on to Bandpass Filter Tuning section and adjust the filters.

CRYSTAL CONTROL VOLTAGE (10 MHz Unit)

(1) Disconnect the yellow wire terminated at A1E8 on the servo board assembly. Connect this yellow wire to a potentiometer as shown below:

(2) Monitor the 10 MHz output of the unit with a frequency counter.
(3) Apply power to the unit and allow at least 15 minutes for thermal stabilization.
(4) Monitor A1TP1 on the servo board with an oscilloscope.
(5) Adjust the output frequency with the test potentiometer to 1 Hz above or below 10 MHz .
(6) Monitor the dc voltage at A5E6 through a 10 Kohm isolation resistor using a voltmeter.
(7) Adjust potentiometer R34 on the synthesizer board, assembly A5, for maximum voltage, then decrease the voltage slowly, watching the oscilloscope for an ac waveform of 127 Hz .
(8) At the first sign of a signal at A1TP1, adjust the output frequency for a maximum 127 Hz signal. Adjust R34 for the maximum signal amplitude.
(9) Disconnect power to the FRK. Remove the test potentiometer and reconnect the yellow wire to A1E8. Apply power to the FRK. Atomic lock should be acquired automatically, resulting in a 254 Hz signal at A1TP1.

CRYSTAL CONTROL VOLTAGE (5 MHz Unit)

(1) Disconnect the yellow wire terminated at A1E8 on the servo board assembly.
(2) Connect a 10 k potentiometer as follows:

(3) Monitor the 5 MHz output of the unit with a frequency counter.
(4) Apply power to the unit and allow at least 15 minutes for thermal stabilization.
(5) Monitor A1TP1 on the servo board with an oscilloscope.
(6) Adjust the output frequency with the test potentiometer to .5 Hz above or below 5 MHz .
(7) Monitor the dc voltage at A5E6 through a 10 Kohm isolation resistor using a voltmeter.
(8) Adjust potentiometer R34 on the synthesizer board, assembly A5, for maximum voltage, then decrease the voltage slowly, watching the oscilloscope for an ac waveform of 127 Hz .
(9) At the first sign of a signal at A1TP1, adjust the output frequency for a maximum 127 Hz signal. Adjust R34 for the maximum signal amplitude.
(10) Disconnect power to the FRK. Remove the test potentiometer and reconnect the yellow wire to A1E8. Apply power to the FRK. Atomic lock should be acquired automatically, resulting in a 254 Hz signal at A1TP1.
i. Bandpass Filter Tuning: Servo Board, Assembly A1

127 HZ ACTIVE BANDPASS FILTER (U2-A) ADJUSTMENT (SERVO LOOP)
(1) Verity that the FRK is stabilized and locked.
(2) Monitor A1TP3 with an oscilloscope.
(3) Connect a 20 megohm resistance jumper between U5, pin 2 and E 2 .
(4) Adjust potentiometer R16 to obtain a waveform as shown in Figure 4-12.

Figure 4-12. Waveform, Servo Board (TP-3)
254 HZ ACTIVE BANDPASS FILTER (U6) ADJUSTMENT (LOCK MONITOR)
(1) Monitor A1TP6 with an oscilloscope.
(2) Verify that the unit is stabilized and locked.
(3) Adjust potentiometer R70 to obtain the most symmetrical negative cycle waveform possible (see Figure 4-13).

Figure 4-13. Waveform, Servo Board (TP-6)
(1) Set the magnetic field trim range and centering. R17 and R19 are the selected components. R17 functions as the primary frequency centering control. R19 works in conjunction with potentiometer R21 to provide a means of manually adjusting the 10 MHz output frequency. R17 and R19 are slightly interactive during their adjustments, therefore the use of two decade boxes for this alignment is suggested (refer to schematic 703-254).
(2) Start the adjustment by setting R17 to ~ 1.2 Kohm and R19 to ~ 120 Kohm. Lower values of R17 shift the frequency higher, while lower values of R19 allow R21 to adjust over a wider range.
(3) Select R17 and R19 so that R21 can adjust the output frequency >1E-9 above and below 10 MHz (or 5 MHz , if this is a 5 MHz FRK).
(4) Connect the unit in the test configuration as shown below.

(See section 4.3.3)

(5) Apply power to the FRK and allow at least 1 hour stabilization time.

4.4.2.3 FRK Temperature Testing Procedure

FRK Temperature Testing Procedure - this test requires the UUT be placed in an environmental testing chamber. Connect the test equipment as shown in Figure 4-14.

Figure 4-14. Environmental Test Chamber Set-up
(1) Adjust the chamber controls so that the air temperature is maintained at $+30^{\circ} \mathrm{C}$ ambient
(2) Apply ac input power to the UUT. Allow sufficient warm-up time to allow the unit's output frequency to stabilize ($>60 \mathrm{~min}$.). If the UUT was operated continuously for greater than 60 minutes prior to this test, no additonal operation time is required.
(3) Start frequency recording. This monitoring should continue throughout the test. The frequency resolution of the chart recorder must be $\Delta f / t=1 \times 10 \mathrm{E}-11 /$ division.
(4) The temperature chamber can be controlled manually or automatically. Set the temperature cycles for the chamber as shown in the "Required" column. Use the left column to document the actual test run conditions so they can be used for future reference.
A. Ambient \qquad ${ }^{\circ} \mathrm{C}$ Cycle Time \qquad hrs

Required

$$
\begin{aligned}
& \left(+30 \pm 2^{\circ} \mathrm{C}\right) \\
& (\geq 1.5 \mathrm{hr} .)
\end{aligned}
$$

B. Low Temperature \qquad ${ }^{\circ} \mathrm{C}$ Cycle Time \qquad hrs
C. High Temperature \qquad ${ }^{\circ} \mathrm{C}$ Cycle Time \qquad hrs

$$
\begin{aligned}
& \left(+15 \pm 2^{\circ} \mathrm{C}\right) \\
& (\geq 1.5 \mathrm{hr} .)
\end{aligned}
$$

APPENDIX

LIST OF DRAWINGS

DRAWING NO.	DESCRIPTION	PAGE NO.
$703-200-001$	FINAL ASSY, FRK	A2
PL 703-200-1	PARTS LIST, FRK	A3
$703-202-11$	WIRING DIAGRAM, LNO	A4
$703-203-1$	OUTLINE DRAWING, FRK	A5
$703-102-T A B$	ASSY, LN OSCILLATOR	A6
PL 703-102-1,2	PARTS LIST, LN OSCILLATOR	A7, 8,9,
$703-103-T A B$	SCHEMATIC, 5 MHz LN OSCILLATOR	A10
$703-103-5$	SCHEMATIC, 10 MHz LN OSCILLATOR	A11
100120		
PL 100120-001	PASSY, SERVO	A12
100117	SCHEMATIC, SERVO	A13, 14, 15
$703-208-1,-2$	ASSY, LAMP BD	A16
PL 703-208-1	PARTS LIST, LAMP BD ASSEMBLY	A17
$703-209$	SCHEMATIC, LAMP BD	A18, A19
$703-253-T A B ~$	ASSY, POWER SUPPLY	A20
PL 703-253-1	PARTS LIST, POWER SUPPLY	A21
$703-254$	SCHEMATIC, POWER SUPPLY	A22, 23
$703-217$	ASSY, SYNTHESIZER	A24
PL 703-217	PARTS LIST, SYNTHESIZER	A25
$703-218$	SCHEMATIC, SYNTHESIZER	A26, 27, 28
$703-220-T A B ~$	ASSY, RESONATOR HEATER	A29
PL703-220-1	PARTS LIST, RESONATOR HEATER	A30
$703-221-1 \&-3$	SCHEMATIC, RESONATOR HEATER	A32

FINAL ASSEMBLY, FRK (203-200-001)

BALE,	EFR	RATOM DIVISION	CONTRACT NO.	CAGE CODE 55761 PL 703-200-1	REVISION LTR. REVISION DATE	$91-04-25$
TITLE: PARTS LIST, FRK					SHEET	2
FIND	QTY	PART OR	SPEC. OR	NOMENCLATURE	REFERENCE	
No.	REQ	IDENTIFYING NO.	MANUFACTURER	OR DESCRIPTION	DESIGNATOR	UNIS No.
1	1	100120-001		SERVO BOARD	A1	
2	1	703-208-1		LAMP BOARD ASSEMBLY	A2	
3	1	703-253-1		POWER SUPPLY ASSEMBLY	A3	
4	1	703-214-1		OSCILLATOR ASSEMBLY	A4	
5	1	703-283-1		SYNTHESIZER ASSEMBLY	A5	
6	1	703-223-1		RESONATOR ASSEMBLY	A6	
7	1	703-226-1		FRAME ASSEMBLY		
8	1	250-165-1		RUBIDIUM LAMP ASSEMBLY		
9	1	703-239		LAMP SUPPORT		
10	1	703-242		COVER PLATE		
11	1	703-245-3		BASEPLATE ASSEMBLY (4-40)		
12	1	250-091		MU-METAL COVER		
13	3	MS35489-4		GROMMET		2801398
14	1	705-150		NAMEPLATE, LABEL		
15	1	MS51957-39		SCREW, PAN HD, 8-32 $\times 1 / 8$		2821433
16	38	85ST-M2×4		SCREW, M2 x 4		70425-1
17	8	85ST-M2x6		SCREW, M2 $\times 6$		70425-3
18	4	$963 \mathrm{ST}-\mathrm{M} 2.5 \times 10$		SCREW, FLAT HD M2.5 x 10		2820500
19	54	$6798 \mathrm{ST}-\mathrm{IN} 2.2$		WASHER, LOCK $2 . \mathrm{mm}$ (I.T.)		
20	46	MW-400		WASHER, FLAT 2 mm		2821475
21				NOT USED		
22	A/R	704-232-1		ADHESIVE SEALANT (PURPLE)		
23	A/R	SN63WRMAP3		SOLDER		2102572
24	A/R	M17/93-RG178		CABLE, COAX		6001032
25	A/R	70422-1		TUBING, SHRINK		
26	A/R	MIL-W-16878, TYPE	E	WIRE, 22 AWG INSULATED, TEFLON		
27	1	703-246-1		CONNECTOR PLATE ASSEMBLY (PIN \& COAX)		
28	1	703-238-5		LABEL, CONNECTOR WIRING		
29	1	703-248		INSULATOR, OSCILLATOR BOARD		
30	A/R	70424-3		FOAM POLYURETHANE (ECCOFOAM FPH)		
31	1	100298-001		INSULATOR FOAM		

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

BALL, EFRATOM DIVISION CONTRACT NO.
CAGE CODE 55761 PL 703-102-1
REVISION LTR. REVISION DATE 91-04-25
TITLE: PARTS LIST, LN OSCILLATOR
SHEET
2

FIND	QTY	PART OR	SPEC. OR	NOMENCLATURE		REFERENCE	
No.	REQ	IDENTIFYING No.	MANUFACTURER	OR DESCRIP	TION	DESIGNATOR	UNIS No.
1	1	703-104		PRINTED WI	RING BOARD		
2	1	70583-2		HOUSING, C	RYSTAL		
3	1	70584		COVER, CRY	STAL		
4	1	EDPT 12 PF NPO		CAPACITOR	12 PF NPO	C18	1500738
5	1	EDPT 27 PF NPO		CAPACITOR	27 PF NPO	C11	1500763
6	1	EDPT 33 PF NPO		CAPACITOR	33 PF NPO	C16	1500747
7	1	EDPT 68 PF NPO		CAPACITOR	68 PF NPO	C22	1500758
8	3	EDPT 100PF NPO		CAPACITOR	100PF NPO	C26,30,32	1500764
9	1	EDPT 270PF NPO		CAPACITOR	270 PF NPO	C 17	1500776
10	1	EDPT SELECT NPO		CAPACITOR	10 PF NOMINAL	C7	
11	1	EDPT SELECT NPO		CAPACITOR	27 PF NOMINAL	C8	
12	1	C320c122J2GSCA		CAPACITOR	$1200 \mathrm{PF}+/-5 \% \mathrm{COG}$	C4	
13	1	C320C SELECT		CAPACITOR	600PF NOMINAL	C5	
14	3	CKR05BX104KSV		CAPACITOR	0.1 UF	C3,10,27	1500688
15	1	CKR06BX474KSV		CAPACITOR	0.47 UF	C31	1500700
16	16	CKR05BX682KS		CAPACTTOR	$\begin{aligned} & 6800 \mathrm{PF}+/-10 \% \\ & \text { C1, } 2,9,12-15,19- \end{aligned}$	$4,29,33,35$	1500695
17	1	CKR06BX105KSV		CAPACITOR	1 UF	C25	
18	1	ETPW 2C 10/6.3		CAPACITOR	10UF, TANTALUM	C34	
29	1	PC26T140		CAPACITOR,	VARIABLE; 1-14PF	C6	1501499
20	1	MV1646		DIODE, VAR	ACTOR	CR1	
21	1	1N5235B		DIODE, ZEN	ER	CR2	
22	1	1N4151		DIODE		CR3	
23	1	MS75084-4		INDUCTOR	2.20 HH	11	
24	2	MS75085-10		INDUCTOR	180 UH	L3, L4	
25	1	70277-SELECT		INDUCTOR	10-25UH	L2	
26	7	2N3904		TRANSISTOR		Q1,2,4-8	
27	1	JANTX2N4857		TRANSISTOR		Q3	
28	1	MJE802		TRANSISTOR		Q9	
29	1	704-286		CRYSTAL 5M	H2	Y1	
30	1	B43KB273K		THERMISTOR	27K+/-10\% $025^{\circ} \mathrm{C}$	RTI	
31	1	70277-1		TRANSFORME	R 13:3	T2	
32	1	MK2 33.2 OHM		RESISTOR	33.2 OHM	R15	4701245
33	2	MK2 56.2 OHM		RESISTOR	56.2 OHM	R18,22	4701286

BALL, EFRATOM DIVISION
CONTRACT NO.
CAGE CODE 55761 PL•703-102-1
REVISION LTR.
REVISION DATE 91-04-25
TITLE: PARTS LIST, LN OSCILLATOR

3. all resistance values are ohws.

Mine is $1 \phi \mathrm{MH}_{3}$ - NEXTPAGE? SCHEMATIC, 5 MHz LN OSCLLLATOR (703-103-TAB)

[^4](1.) SEE TABULATION BLOCK FOR COM PONENT VALUE
2. FOR ASSEMBLY DRAWING SEE NO. 703-102-5
3. USE WITH NORMAL (NON-LN) SERVO BOARD

NOTES: UNLESS OTHERWISE SPECIFED.

1. part attachment, hiring, soldering. cleaning and workmanship SHALL BE IN ACCORDANCE WTH IPC-S-815 CLASS 111 .
2. CONFORMAL COAT BOTH SIDES OF BOARD IN ACCORDANCE WTH MIL-STD-275 USING MAIERIAL CONFORMING TO MIL-I-46058. MASK TEST POINTS. TERMINALS, MOUNTNG SURFACES AND COMPONENT ADNUSTMENT SCREWS PRIOR TO-APPLICAMON.
3. IDENTIFY ASSEMBLY WITH ASSEMBLY NUMBER, REVISION LETIER, AND SERIAL NUMBER PER MIL-STD-130.
4. FOR SCHEMATIC SEE DRAWING NUMBER 100117.
5. ALI COMPONENTS SHOWN ON DRAWANG MAY NOT BE USED ON ALL ASSEMBUES see tabulation and parts list for each assembly.

TABUUATION CHART		
ASSEMELY No.	DESCRIPTON	INSTALL JUMPERS
100120-000	GASIC ASSEMBLY	NONE
100120-001	STANDARD VERSION	A-C, $D-F, G-H$
100120-002	TTL VERSION	A-C. D-F, Gm
100120-003	LOW NOISE 5 MHz VERSION	$A-B, D-E, G-J$
100120-004	LOW NOISE TIL VERSION	A-B, D-E, G-J
100120-005	SPECIAL FOR GLOBAL	A-C, D-F, G-H
100120-006	LOW NOISE 10 MHz VERSION	A-B, D-E. G-J

$\mathbf{1}$

BALL, TITLE	$\begin{aligned} & \mathrm{EFR} \\ & \mathrm{E}: ~ \mathrm{PR} \end{aligned}$	RATOM RTS	$\begin{aligned} & \text { M DIVISION } \\ & \text { LIST LAMP B } \end{aligned}$	CONTRACT NO. RD ASSY FRK	CAGE CODE 55761 PL 703-208-1	REVISION LTR. REVISION DATE	$\begin{aligned} & U \\ & 6-6-90 \end{aligned}$
						SHEET	2
FIND	QTY	PART	OR	SPEC. OR	NOMENCLATURE	REFERE	
No.	REQ	IDEN	NTIFYING No.	MANUFACTURER	OR DESCRIPTION	DESIGNATOR	UNIS No.
1	1	703-	-210-1		PRINTED WIRING BOARD		
2	1	EDPT	T 10PF NPO	S-T	CAPACITOR 10PF	C10	1500734
3	7	C322	2C332K1G5CA	KEMET	CAPACITOR 3300PF	CI-4,7-9	1500579
4	1	PC32	T140	JOHNSON	CAPACITOR, VARIABLE 1.5-14PF	C11	1501515
5	1	1N52	232B	MOT	DIODE, ZENER	CR1	4800091
6	1	1N41	151	F	DIODE, SWITCHING	CR3	4800084
7	1	MS75	5083-3	DELEVAN	INDUCTOR 0.15 UH	L3	1801443
8	2	MS75	5084-4	DELEVAN	INDUCTOR 2.2UH	L1,L2	1801448
9	1	2N39	904	MOTOROLA	TRANSISTOR	Q1	4800197
10	1	2N33	375	MOTOROLA	TRANSISTOR	Q2	4800194
11	1	LM74	41 HMQB	F	INTEGRATED CIRCUIT	U1	3131016
12	2	MK2	100 OHM	S-T	RESISTOR 100 OHM	R2,9	4701171
13	1	MK2	681 OHM	S-T	RESISTOR 681 OHM	R15	4701297
14	1	MK2		S-T	RESISTOR 1K	R3	4701153
15	1	MK2	1.5K	S-T	RESISTOR 1.5K	R4	4701161
16	1	MK2	4.75K	S-T	RESISTOR 4.75K	R6	4701267
17	1	MK2	5.76K	S-T	RESISTOR 5.76 K	R1	4701280
18	1	MK2	8.25K	S-T	RESISTOR 8.25K	R7	4701309
19	1	MK2	39.2K	S-T	RESISTOR 39.2K 1/4W	R16	4701250
20	1	RWR8	80520ROFR		RESISTOR 20 OHM 2W	R14	4701967
21	1	RWR8	81S1R00FR		RESISTOR 1.00 OHM 1 W	R11	4702010
22	1	3339	9P-1-502	BOURNS	RESISTOR VARIABLE 5K	R5	4750249
23	1	MK2	332 OHM	S-T	RESISTOR 332 OHM	R8	4701248
24	2	CKRO	5BX682KSV	KEMET	CAPACITOR 6800PF	C12,14	1500695
25	1	7033	31-1		THERMOSTAT ASSEMBLY		
26	1	250	-169		MICA WINDOW		
27	3	7042	25-3		SCREW, M2 $\times 6$		
28	3	7041	14-4		WASHER, FLAT, M2		
29	3	6798	$8 \mathrm{ST}-1 \mathrm{~N} 2.2$		WASHER, LOCK, M2		
30	1	7033			HEATSINK CABLE		
31	2	MS35	5650-304		NUT; HEX, 10-32		2821407
32	1	MS35	5333-73		WASHER, IT LOCK, No. 10		2821386
33	1	MK2	140 OHM	S~T	RESISTOR 140 OHM 1/4W	R13	4701181
34	1	CKRO	05BX104KSV		CAPACITOR 0.1UF	C6	1500688

2. Resistance values are ohms.

1. FOR ASSEMBLY SEE OWG\# 7ص3-208. NOTES: UNLESS OTHERWISE SPECIFIED.

USST	NOT
USED	USED
$U 1$	-
$C 14$	$C 5,13$
R116	$R 15$
$C R 3$	$C R 2$
$Q 3$	-
$E 12$	-
$R T 1$	
$L 4$	


```
NOTES-UNLESS OTHERWISE SPEIIFIED
    1.,SEE SCHEMATIC NO. 703-254.
```

TABULATION		
PART NO.	DESCRIPTION	
703-253-1	CRB NOT USED, INSTALL JUMPER $L 14[3 L 3, L 4$	STANDARD P.S.
703-253-2	INSTALL CRB \& CUT ETCH BETWEEN CRB-C AND FUSE FI	USED WITH FITIER CONN \& SEPARATE HEATER PUR
703-253-3	INSTALL CR\& \& CUT ETCH BETWEEN CR8-C \& FUSE FI. DO NOT INSTALL $\angle 1, \angle 2, \angle 3, \angle 4,16,17$ INSTALL JUMPER AT $[1, L 2, L 3, L 4$	USED WITH SEPARATE HEATER PDWER

BALL, EFRATOM DIVISION TITLE: PARTS LIST, POWER	CONTRACT NO. UPPLY (A3)	CAGE CODE 55761	PL 703-253-1	REVISION LTR. REVISION DATE	91-04-25
TITLE: PARTS LIST, POWER SUPPLY (A3)				SHEET	3
FIND QTY PART OR	SPEC. OR	NOMENCLATURE		REFERENCE	
No. REQ IDENTIFYING No.	MANUFACTURER	OR DESCRIPTION		DESIGNATOR	UNIS No.
351 MS75084-4	DALE	INDUCTOR 2.2UH		L5	1801448
361 MK2 681 OHM		RESISTOR 681 OHM		R18	4701297

NOTES: UNLESS DTHERWISE SPECIFIED.

1. FOR SCHEMATIC DIAGRAM SEE DWG ND. 703-218-1,-2.

TABGLLATIGN	
$703-218-1$	STD.AS SHOWN
$703-218-2$	LN. RT IS SK

TITLE: PARTS LIST SYNTHESIZER ASSEMBLY BOARD 5 (A5)

FIND NO. QTY		PART OR IDENTIFYING NO.	SPEC. OR MANUFACTURER	NONMENLCATURE OR DESCRIPTION	REFERENCE DESIGNATOR
1	1	703-219	E	Printed Wiring Board	
2	1	EDPT 3.9 PF NPO	S-T	Capacitor 3.9 PF	C13
3		NOT USED			
4	1	EDPT 15PF NPO	S-T	Capacitor 15PF	C 21
5	2	EDPT 22PF NPO	S-T	Capacitor 22PF	C19, C27
6	1	EDPT 33PF NPO	S-T	Capacitor 33PF	C23
7	1	EDPT 39PF NPO	S-T	Capacitor 39PF	C17
8	1	EDPT 47PF NPO	S-T	Capacitor 47PF	C18
9	1	EDPT 68PF NPO	S-T	Capacitor 68PF	C9
10	1	EDPT 82PF NPO	S-T	Capacitor 82PF	C29
11	2	EDPT 100PF NPO	S-T	Capacitor loopF	C14, C28
12	1	C052C272K2G5CA	KEMET	Capacitor 2700PF +/- 10\%	C30
13	14	CKR05BX682KS	AVX	Capacitor 6800PF +/-10\%	$\begin{aligned} & C 1,3,4,7,8,11,15,16 \\ & 20,22,24,25,26,31 \end{aligned}$
14	2	22NA473J	S\&E1	Capacitor . $047 \mathrm{UF}+/-5 \% 50 \mathrm{~V}$	C2,12
15	2	CKR05BX104KS	KEMET	Capacitor . 1UF	C5, C6
16	3	IN4151	F	Diode	CR4,5,7
17	1	MV1638	KNOX	Diode, Varactor	CR6
18	2	IM-2 .15UH	Dale	Inductor . 15 UH	L6, 10
19	AR	TYPE 120		Thermal Joint Compound	
20	5	1025-38	Delevan	Inductor 5.6UH	L4, $7,9,12,13$
21	1	1025-50	Delevan	Inductor 18UH	L2
22	2	70277-4	E	Inductor, Variable (GRN, Yel)	L3, 11
23	2	70277-3	E	Inductor, Variable (RED, Yel)	L5,8
24	1	7805 CT	Natn'l	Voltage Reg.	VR1
25	3	2N2369A	F	Transistor	Q2-4
26	2	2N3553	M	Transistor	Q7,8
27	1	MK2 47.5 Ohms	S-T	Resistor 47.5 Ohms +/- 1\% 1/4W	R1
28	4	MK2 56.2 Ohms	$s-T$	Resistor 56.2 Ohms +/- 1\% 1/4W	R19,20,24,28

TITLE:	PARTS LIST SYNTHESIZER	ASSEMBLY BOARD	5	(A5)	
FIND	PART OR	SPEC. OR	NONMENLCATURE OR	REFERENCE	
NO. QTY	IDENTIFYING NO.	MANUFACTURER	DESCRIPTION	DESIGNATOR	

29	1	MK2 100 Ohms	S-T	Resistor 100 Ohms +/- 1\% 1/4W	R14
30	1	MK2 121 Ohms	S-T	Resistor 121 Ohms +/- 1\% 1/4W	R29
31	1	MK2 150 Ohms	S-T	Resistor 150 Ohms +/- 1\% 1/4W	R13
32	1	MK2 464 Ohms	S-T	Resistor 464 Ohms +/- 1\% 1/4W	R27
33	1	MK2 825 Ohms	S-T	Resistor 825 Ohms +/- 1\% 1/4W	R32
34	5	MK2 1 K Ohms	S-T	Resistor 1K Ohm $+/-1 \% 1 / 4 \mathrm{~W}$	R5, 7, 21, 22, 30
35	1	MK2 1.5K Ohms	S-T	Resistor 1.5K Ohms +/-. 1\% 1/4W	R26
36	2	MK2 1.82K Ohms	S-T	Resistor 1.82K Ohms $+/-1 \% 1 / 4 \mathrm{~W}$	R15,16
37	1	MK2 2.21 K Ohms	S-T	Resistor 2.21 K Ohms $+/-1 \% 1 / 4 \mathrm{~W}$	R2
38	3	MK2 3.48K Ohms	S-T	Resistor 3.48K Ohms $+/-1 \% 1 / 4 \mathrm{~W}$	R8, 11, 12
39	1	MK2 5.23K Ohms	S-T	Resistor 5.23 K Ohms $+/-1 \% 1 / 4 \mathrm{~W}$	R9
40	1	MK2 5.76K Ohms	S-T	Resistor 5.76 K Ohms $+/-1 \% 1 / 4 \mathrm{~W}$	R10
41		NOT USED			
42	2	MK2 10K Ohms	S-T	Resistor 10K Ohms +/- 1\% 1/4W	R6,18
43	1	MK2 100K Ohms	S-T	Resistor 100K Ohms +/-1\% 1/4W	R3
44	2	MK2 Select A/R	S-T	Resistor Select $+/-1 \% 1 / 4 \mathrm{~W}$	R31,33
45	1	RCR20G471JS	MIL	Resitor 470 Ohms +/- 5\% 1/2W	R25
46	2	2N2222A		Transistor	Q5,6
47	1	3339P-1-502	Bourns	Resistor Variable 5K Ohms	R34
48	1	70278-1	E	Transformer	T1
49	1	SN54LS00J	T.I.	Integrated Circuit	U1
50	1	SN54LS93J	T.I.	Integrated Circuit	U2
51	1	SN5472J	T.I.	Integrated circuit	U3
52	1	200-. 250-. 318	HSP	Heatsink	XQ8
53		NOT USED			
54	3	7717-4N	T.	TSTR PAD (TO-5)	
55	5	7717-93N	T.	TSTR PAD (TO-18 Spreader)	
56	15	90416-3	K.	Solder Terminal	

BOARD AS SCHEMATIC, SYNTHESIZER BOARD (PL 703-218)

TABULATION					
ASSEMBIY NO.	R9	R10	RIII	$R 13$	USED ON
703-220-1	3.2K	1.0K	10 K	. 619Ω	$F R X-H$
703-220-3	2.32 K	845Ω	4.75 K	.4028	FRK-HIN (IVVRX)

SCHEMATIC, RESONATOR HEATER BOARD

[^0]: *After serial poll is complete, AS210 must be put in talk mode and the specific message read out.

[^1]: * On units with serial number 178 and above, C8 and test point TV are located on the back side of assembly 117226 for easy access.

[^2]: **** END OF LIST ****

[^3]: **** END OF LIST *****

[^4]: NOTES-UNLESS OTHERWISE SPECIFIED

